首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Six different strategies have recently been proposed for the European Union (EU) energy system in the European Commission's report, Energy Roadmap 2050. The objective for these strategies is to identify how the EU can reach its target of an 80% reduction in annual greenhouse gas emissions in 2050 compared to 1990 levels. None of these scenarios involve the large-scale implementation of district heating, but instead they focus on the electrification of the heating sector (primarily using heat pumps) and/or the large-scale implementation of electricity and heat savings. In this paper, the potential for district heating in the EU between now and 2050 is identified, based on extensive and detailed mapping of the EU heat demand and various supply options. Subsequently, a new ‘district heating plus heat savings’ scenario is technically and economically assessed from an energy systems perspective. The results indicate that with district heating, the EU energy system will be able to achieve the same reductions in primary energy supply and carbon dioxide emissions as the existing alternatives proposed. However, with district heating these goals can be achieved at a lower cost, with heating and cooling costs reduced by approximately 15%.  相似文献   

2.
3.
In Sweden, where district heating accounts for a significant share of residential heating, it has been argued that improvements in end-use energy efficiency may be counter-productive since such measures reduce the potential of energy efficient combined heat and power production. In this paper we model how the potential trade-offs between energy supply and end-use technologies depend on climate policy and energy prices. The model optimizes a combination of energy efficiency measures, technologies and fuels for heat supply and district heating extensions over a 50 year period. We ask under what circumstances improved end-use efficiency may be cost-effective in buildings connected to district heating? The answer hinges on the available technologies for electricity production. In a scenario with no alternatives to basic condensing electricity production, high CO2 prices result in very high electricity prices, high profitability of combined heat and power production, and little incentive to reduce heat demand in buildings with district heating. In contrast, in a scenario where electricity production alternatives with low CO2 emissions are available, the electricity price will level out at high CO2 prices. This gives heat prices that increase with the CO2 price and make end-use efficiency cost-effective also in buildings with district heating.  相似文献   

4.
《Applied Energy》2009,86(2):144-154
Improved energy efficiency and greenhouse gas mitigation could be achieved by replacing resistance heaters with district heating system. In 2005, only about 8% of the Swedish detached houses had district heating system. The expansion of such systems largely depends on homeowners’ adoption decisions. And, to motivate homeowners to adopt district heating, it is essential to understand their decision-making process. In this context, in June 2005 we carried out a questionnaire survey of about 700 homeowners who lived in the city of Östersund in houses with resistance heaters (baseline survey). About 84% of the respondents did not intend to install a new heating system. Since then these homeowners were influenced by (a) an investment subsidy by the Swedish government to replace resistance heaters with district heating, a brine/water-based heat pump, or a biomass-based heating system and (b) a marketing campaign by the municipality-owned district heating company. This paper analyses how these two measures influenced about 78% of the homeowners to adopt the district heating system. For this purpose we carried out a follow-up survey of the same homeowners in December 2006 (resurvey). Results showed that the investment subsidy and the marketing campaign created a need among the homeowners to adopt a new heating system. The marketing campaign was successful in motivating them to adopt the district heating system. The marketing strategy by the district heating company corresponds to the results obtained in the baseline survey.  相似文献   

5.
In Sweden, over 50% of building heating requirements are covered by district heating. Approximately 8% of the heat supply to district heating systems comes from excess heat from industrial processes. Many studies indicate that there is a potential to substantially increase this share, and policies promoting energy efficiency and greenhouse gas emissions reduction provide incentives to do this. Quantifying the medium and long-term economic and carbon footprint benefits of such investments is difficult because the background energy system against which new investments should be assessed is also expected to undergo significant change as a result of the aforementioned policies. Furthermore, in many cases, the district heating system has already invested or is planning to invest in non-fossil heat sources such as biomass-fueled boilers or CHP units. This paper proposes a holistic methodological framework based on energy market scenarios for assessing the long-term carbon footprint and economic benefits of recovering excess heat from industrial processes for use in district heating systems. In many studies of industrial excess heat, it is assumed that all emissions from the process plant are allocated to the main products, and none to the excess heat. The proposed methodology makes a distinction between unavoidable excess heat and excess heat that could be avoided by increased heat recovery at the plant site, in which case it is assumed that a fraction of the plant emissions should be allocated to the exported heat. The methodology is illustrated through a case study of a chemical complex located approximately 50 km from the city of Gothenburg on the West coast of Sweden, from which substantial amounts of excess heat could be recovered and delivered to heat to the city's district heating network which aims to be completely fossil-free by 2030.  相似文献   

6.
《Applied Energy》2009,86(2):126-134
House envelope measures and conversion of heating systems can reduce primary energy use and CO2 emission in the existing Swedish building stock. We analysed how the size and construction of electrically heated detached houses affect the potential for such measures and the potential for cogenerated district heating. Our starting point was two typical houses built in the 1970s. We altered the floor plans to obtain 6 houses, with heated floor space ranging between 100 and 306 m2. One of the houses was also analysed for three energy standards with differing heat loss rates. CO2 emission, primary energy use and heating cost were estimated after implementing house envelope measures, conversions to other heating systems and changes in the generation of district heat and electricity. The study accounted for primary energy, including energy chains from natural resources to useful heat in the houses. We showed that conversion to district heating based on biomass, together with house envelope measures, reduced the primary energy use by 88% and the CO2 emission by 96%, while reducing the annual societal cost by 7%. The choice of end-use heating system was decisive for the primary energy use, with district heating being the most efficient. Neither house size nor energy standard did significantly change the ranking of the heating systems, either from a primary energy or an economic viewpoint, but did affect the extent of the annual cost reduction after implementing the measures.  相似文献   

7.
Managing the electricity network through ‘smart grid’ systems is a key strategy to address challenges of energy security, low carbon transitions and the replacement of ageing infrastructure networks in the UK. Small and medium enterprises (SMEs) have a significant role in shaping patterns of energy consumption. Understanding how their activities interrelate with changes in electricity systems is critical for active network management. A significant challenge for the transformation of electricity systems involves comprehending the complexity that stems from the variety of commercial activities and diversity of social and organizational practises among SMEs that interact with material infrastructures. We engage with SMEs to consider how smart grid interventions ‘fit’ into everyday operational activities. Drawing on analysis of empirical data on electricity use, smart metre data, surveys, interviews and ‘energy tours’ with SMEs to understand lighting, space heating and cooling, refrigeration and IT use, this paper argues for experimenting with the use of practise theory as a framework for bringing together technical and social aspects of energy use in SMEs. This approach reveals that material circumstances and temporal factors shape current energy demand among SMEs, with ‘connectedness’ an emergent factor.  相似文献   

8.
The operation of a district heating system depends on the heat load demand, which varies throughout the year. In this paper, we analyze the coproduction of district heat and electricity or biomotor fuels. We demonstrate how three different taxation scenarios and two crude oil price levels influence the selection of production units to minimize the district heat production cost and calculate the resulting primary energy use. Our analysis is based on the annual measured heat load of a district heating system. The minimum-cost district heat production system comprises different production units that meet the district heat demand and simultaneously minimize the district heat production cost. First, we optimize the cost of a district heat production system based on the cogeneration of electricity and heat with and without biomass integrated gasification combined-cycle technology. We considered cogenerated electricity as a byproduct with the value of that produced by a condensing power plant. Next, we integrate and optimize different biomotor fuel production units into the district heat production system by considering biomotor fuels as byproducts that can substitute for fossil motor fuels. We demonstrate that in district heating systems, the strengthening of environmental taxation reduces the dependence on fossil fuels. However, increases in environmental taxation and the crude oil price do not necessarily influence the production cost of district heat as long as biomass price is not driven by policy measures. Biomotor fuel production in a district heating system is typically not cost-efficient. The biomotor fuels produced from the district heating system have to compete with those from standalone biomotor fuel plants and also with its fossil-based counterparts. This is also true for high oil prices. A carbon tax on fossil CO2 emissions based on social cost damage will increase the competitiveness of biomass-based combined heat and power plants, especially for BIGCC technology with its high electricity-to-heat ratio.  相似文献   

9.
It is well recognized that in the long run, the implementation of energy efficiency measures is a more cost-optimal solution in contrast to taking no action. However, the Net ZEB concept raises a new issue: how far should we go with energy efficiency measures and when should we start to apply renewable energy technologies? This analysis adopts the LCC methodology and uses a multi-family Net ZEB to find the answer to this question. Moreover, it looks at the issue from the building owner’s perspective, hence it should be seen as a private economy analysis. The study includes three levels of energy demand and three alternatives of energy supply systems: (1) photovoltaic installation with photovoltaic/solar thermal collectors and an ambient air/solar source heat pump; (2) photovoltaic installation with a ground-source heat pump; (3) photovoltaic installation with district heating grid. The results indicate that in order to build a cost-effective Net ZEB, the energy use should be reduced to a minimum leaving just a small amount of left energy use to be covered by renewable energy generation. Moreover, from the user perspective in the Danish context, the district heating grid is a more expensive source of heat than a heat pump for the Net ZEB.  相似文献   

10.
With the increased interest in exploiting renewable energy sources for district heating applications, the economic comparison of viable options has been considered as an important step in making a sound decision. In this paper, the economic performance of several energy options for a district heating system in Vancouver, British Columbia, is studied. The considered district heating system includes a 10 MW peaking/backup natural gas boiler to provide about 40% of the annual energy requirement and a 2.5 MW base‐load system. The energy options for the base‐load system include: wood pellet, sewer heat, and geothermal heat. Present values of initial and operating costs of each system were calculated over 25‐year service life of the systems, considering tax savings due to depreciation and operating costs, and salvage value of equipment and building and resale price of land in the cash flow analysis. It was shown that the natural gas boiler option provided less expensive energy followed by the wood pellet heat producing technologies, sewer heat recovery, and geothermal heat pump. Among wood pellet technologies, the grate burner was a less expensive option than powder and gasifier technologies. It was found that using natural gas as a fuel source for the peaking/backup system accounted for 37% of the heat production cost for the considered district‐heating center. The results show that the cost of produced heat from wood pellet grate burner is well comparable to that of the natural gas boiler. Emissions of the systems are also calculated in this study. It is shown that the natural gas boiler for the base‐load heat production would produce more than 4300 tonnes of GHG emission per year, while wood pellet burning systems are GHG neutral. Sensitivity analysis on various inputs to the economic model has been carried out. It was shown that 20% increase in capital cost of the natural gas base‐load system or 1% decrease in wood pellet price inflation would make the wood pellet grate burner economically preferable to the natural gas boiler. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
This paper presents the findings of a study on decision making models for the analysis of capital-risk investors’ preferences on biomass power plants projects. The aim of the work is to improve the support tools for policy makers in the field of renewable energy development.Analytic Network Process (ANP) helps to better understand capital-risk investors preferences towards different kinds of biomass fueled power plants. The results of the research allow public administration to better foresee the investors’ reaction to the incentive system, or to modify the incentive system to better drive investors’ decisions.Changing the incentive system is seen as major risk by investors. Therefore, public administration must design better and longer-term incentive systems, forecasting market reactions. For that, two scenarios have been designed, one showing a typical decision making process and another proposing an improved decision making scenario.A case study conducted in Italy has revealed that ANP allows understanding how capital-risk investors interpret the situation and make decisions when investing on biomass power plants; the differences between the interests of public administrations’s and promoters’, how decision making could be influenced by adding new decision criteria, and which case would be ranked best according to the decision models.  相似文献   

12.
The role of district heating in future renewable energy systems   总被引:1,自引:0,他引:1  
Based on the case of Denmark, this paper analyses the role of district heating in future Renewable Energy Systems. At present, the share of renewable energy is coming close to 20 per cent. From such point of departure, the paper defines a scenario framework in which the Danish system is converted to 100 per cent Renewable Energy Sources (RES) in the year 2060 including reductions in space heating demands by 75 per cent. By use of a detailed energy system analysis of the complete national energy system, the consequences in relation to fuel demand, CO2 emissions and cost are calculated for various heating options, including district heating as well as individual heat pumps and micro CHPs (Combined Heat and Power). The study includes almost 25 per cent of the Danish building stock, namely those buildings which have individual gas or oil boilers today and could be substituted by district heating or a more efficient individual heat source. In such overall perspective, the best solution will be to combine a gradual expansion of district heating with individual heat pumps in the remaining houses. Such conclusion is valid in the present systems, which are mainly based on fossil fuels, as well as in a potential future system based 100 per cent on renewable energy.  相似文献   

13.
Turkey is an energy importing nation with more than half of our energy requirements met by imported fuels. Air pollution is becoming a significant environmental concern in the country. In this regard, geothermal energy and other renewable energy sources are becoming attractive solution for clean and sustainable energy future for Turkey. Turkey is the seventh richest country in the world in geothermal energy potential. The main uses of geothermal energy are space heating and domestic hot water supply, greenhouse heating, industrial processes, heat pumps and electricity generation. The district heating system applications started with large-scale, city-based geothermal district heating systems in Turkey, whereas the geothermal district heating centre and distribution networks have been designed according to the geothermal district heating system (GDHS) parameters. This constitutes an important advantage of GDHS investments in the country in terms of the technical and economical aspects. In Turkey, approximately 61,000 residences are currently heated by geothermal fluids. A total of 665 MWt is utilized for space heating of residential, public and private property, and 565,000 m2 of greenhouses. The proven geothermal heat capacity, according to data from existing geothermal wells and natural discharges, is 3132 MWt. Present applications have shown that geothermal energy is clean and much cheaper compared to the other fossil and renewable energy sources for Turkey.  相似文献   

14.
15.
提高能源决策水平相关问题探讨   总被引:1,自引:0,他引:1  
白泉  郁聪  佟庆 《中国能源》2004,26(4):19-23
我国正处在能源高速发展的十字路口,未来中国的能源能否可持续发展,能源决策将起着龙头作用。该文比较全面地剖析了近几年我国能源决策的现状,肯定了政府为提高能源决策能力而作出的成绩,指出了新时期我国能源发展将面临的挑战,提出了进一步提高能源决策的建议。  相似文献   

16.
Making housing developments ‘environmentally sustainable’ requires housing developers to be accountable for their ‘green’ credentials. Accountability is promoted by both the UK government's environmental policy for housing design – the Code for Sustainable Homes – and local councils in their planning criteria. These accountability practices are key to how relationships between housing professionals and local planning authorities influence practices and outcomes of environmental sustainability. In this article, we examine how accountability is performed in housing design and development. We argue that accountability practices involve the management of making environmental sustainability visible through demonstrating the utilization of sustainable technologies. We contend that these ‘visibility’ practices are carried out to the detriment of an appreciation of how energy is both provided and consumed. We contend that using the installation phase of sustainable technologies as a point of adequate assessment of the environmental effectiveness of a building is short-sighted. Policy needs to look beyond this, and consult with professionals who develop and sell houses to understand better their working priorities and contexts that shape the provision of renewable energy in the planning phase and post-build.  相似文献   

17.
Through energy efficiency measures, it is possible to reduce heat surplus in the pulp and paper industry. Yet pulp and paper mills situated in countries with a heat demand for residential and commercial buildings for the major part of the year are potential heat suppliers. However, striving to utilize the heat within the mills for efficient energy use could conflict with the delivery of excess heat to a district heating system. As part of a project to optimize a regional energy system, a sulfate pulp mill situated in central Sweden is analyzed, focusing on providing heat and electricity to the mill and its surrounding energy systems. An energy system optimization method based on mixed integer linear programming is used for studying energy system measures on an aggregated level. An extended system, where the mill is integrated in a regional heat market (HM), is evaluated in parallel with the present system. The use of either hot sewage or a heat pump for heat deliveries is analyzed along with process integration measures. The benefits of adding a condensing unit to the back-pressure steam turbine are also investigated. The results show that the use of hot sewage or a heat pump for heat deliveries is beneficial only in combination with extended heat deliveries to an HM. Process integration measures are beneficial and even increase the benefit of selling more heat for district heating. Adding a condensing turbine unit is most beneficial in combination with extended heat deliveries and process integration. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
19.
Economic evaluation of different energy supply systems (district or local heating by natural gas) in Serbia is considered in this paper. According to variety of Serbian settlements (in density, size and layout of buildings) model which has ability to represent their different characteristics is formed. Model is based on identification of smaller urban areas with identical or similar characteristics and their representations with one of predefined nominal urban areas. For various nominal urban areas preferred type of energy supply system was selected. Obtained results formed matrix of preferred type of energy supply system (district or local heating) for different urban structures. This models’ matrix could be simple and useful tool for initial decision about energy supply system.  相似文献   

20.
In order to decrease the energy consumption of large-scale district heating systems with cogeneration, a district heating system is presented in this paper based on absorption heat exchange in the cogeneration system named Co-ah cycle, which means that the cogeneration system is based on absorption heat exchange. In substations of the heating system, the temperature of return water of primary heat network is reduced to about 25°C through the absorption heat-exchange units. In the thermal station of the cogeneration plant, return water is heated orderly by the exhaust steam in the condenser, the absorption heat pumps, and the peak load heater. Compared with traditional heating systems, this system runs with a greater circuit temperature drop so that the delivery capacity of the heat network increases dramatically. Moreover, by recovering the exhausted heat from the condensers, the capacity of the district heating system and the energy efficiency of the combined heat and power system (CHP system) are highly developed. Therefore, high energy and economic efficiency can be obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号