首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ti6Al4V的微磨粒磨损研究   总被引:1,自引:0,他引:1  
研究了医用Ti6Al4V合金在蒸馏水中的微磨粒磨损行为,考察了载荷、滑行距离、料浆浓度和转速对微磨粒磨损规律的影响,并对微磨粒磨损机制进行了讨论。结果表明:随载荷、滑行距离和料浆浓度的增加,Ti6Al4V合金的磨损量增加,磨损机制由三体磨损转变为混合磨损。  相似文献   

2.
王芳  毕秦岭  王晓波 《润滑与密封》2007,32(11):102-104,164
采用SRV型微动摩擦磨损实验机分别考察了Ti6Al4V-钢摩擦副在2种碳酸酯润滑下的摩擦磨损性能,并利用扫描电子显微镜和X射线光电子能谱仪分析了Ti6Al4V磨斑表面形貌和典型元素的化学状态。结果表明,2种碳酸酯作为Ti6Al4V/钢摩擦副的润滑剂所表现出的减摩抗磨和承载能力优于其相对应的脂肪醇;载荷和频率明显影响Ti6Al4V/钢摩擦副在碳酸酯润滑下的摩擦磨损行为;碳酸二-2-乙基己酯所表现出的减摩抗磨和承载能力明显优于碳酸二辛酯;2种碳酸酯对Ti6Al4V/钢摩擦副的润滑机制为在Ti6Al4V磨损表面形成吸附膜,从而起到减摩抗磨的作用。  相似文献   

3.
A significant improvement of tribological properties on Ti–6Al–4V has been achieved by developed in this study multilayer treatment method for the titanium alloys. This treatment consists of an intermediate 2 μm thick TiCxNy layer which has been deposited by the reactive arc evaporation onto a diffusion hardened material with interstitial O or N atoms by glow discharge plasma in the atmosphere of Ar+O2 or Ar+N2. Subsequently, an external 0.3 μm thin nanocomposite carbon-based WC1−x/C coating has been deposited by a reactive magnetron sputtering of graphite and tungsten targets. The morphology, microstructure, chemical and phase compositions of the substrate material after treatment and coating deposition have been investigated with use of AFM, SEM, EDX, XRD, 3D profilometry and followed by tribological investigation of wear and friction analysis. An increase of hardness in the diffusion treated near-surface zone of the Ti–6Al–4V substrate has been achieved. In addition, a good adhesion between the intermediate gradient TiCxNy coating and the Ti–6Al–4V substrate as well as with the external nanocomposite coating has been obtained. Significant increase in wear resistance of up to 94% when compared to uncoated Ti–6Al–4V was reported. The proposed multilayer system deposited on the Ti–6Al–4V substrate is a promising method to significantly increase wear resistance of titanium alloys.  相似文献   

4.
Nitrogen ion implantation was performed on biomedical titanium alloys by using of the PBII technology to improve the surface mechanical properties for the application of artificial joints. The titanium nitride phase was characterized with X-ray photoelectron spectroscopy (XPS). The nanohardness of the titanium alloys and implanted samples were measured by using of in-situ nano-mechanical testing system (TriboIndenter). Then, the fretting wear of nitrogen ion implanted titanium alloys was done on the universal multifunctional tester (UMT) with ball-on-flat fretting style in bovine serum lubrication. The fretting wear mechanism was investigated with scanning electron microscopy (SEM) and 3D surface profiler. The XPS analysis results indicate that nitrogen diffuses into the titanium alloy and forms a hard TiN layer on the Ti6Al4V alloys. The nanohardness increases from 6.40 to 7.7 GPa at the normal load of 2 mN, which reveals that nitrogen ion implantation is an effective way to enhance the surface hardness of Ti6Al4V. The coefficients of friction for Ti6Al4V alloy in bovine serum are obviously lower than that in dry friction, but the coefficients of friction for nitrogen ion implanted Ti6Al4V alloy in bovine serum are higher than that in dry friction. Fatigue wear controls the fretting failure mechanism of nitrogen ion implanted Ti6Al4V alloy fretting in bovine serum. The testing results in this paper prove that nitrogen ion implantation can effectively increase the fretting wear resistance for Ti6Al4V alloy in dry friction, and has a considerable improvement for Ti6Al4V alloy in bovine serum lubrication.  相似文献   

5.
The tribological behaviour and surface interactions of Ti6Al4V sliding against AISI 52100 steel have been studied in the presence of three commercial methylimidazolium (mim) room-temperature ionic liquids (ILs) containing the same anion, bis(trifluoromethylsulfonyl)amide, [(CF3SO2)2N] (Tf2N), and cations with increasing alkyl chain length, 1-ethyl-3-methylimidazolium [C2mim], 1-butyl-3-methylimidazolium [C4mim] and 1-octyl-3-methylimidazolium [C8mim]. Increasing alkyl chain length increases viscosity whilst reducing the onset temperature for thermal degradation in air, the surface tension and the molecular polarity of the ILs. At room temperature, the tribological performance of the three ILs has been compared with that of a mineral oil (MO). The results show the reduction of the running-in period for the ILs with respect to the MO. In contrast with previously described results for IL lubrication, wear rates for Ti6Al4V at room temperature increase as the alkyl chain length of the ILs increases. The maximum wear reduction, of a 39%, with respect to MO is obtained for the [C2mim] cation, with only two carbon atoms on the lateral chain. This was the IL selected for the tests at 100 °C. At this temperature, the reduction of the mean friction coefficient with respect to the MO is higher than 50%, whilst the wear rate of Ti6Al4V is reduced by 78%. The friction-sliding distance records for the IL at 100 °C show sharp transitions, related to formation of wear debris and surface interactions between the Tf2N anion and the aluminium present in the Ti6Al4V alloy. Surface tribolayers and wear debris have been studied by SEM–EDX observations and XPS analysis.  相似文献   

6.
Metallic Ti–Co binary coatings were fabricated on titanium alloy (Ti–6Al–4V) substrate by laser surface cladding technique using a continuous wave RofinSinar 4 kW Nd: YAG laser. The influence of laser power on microstructure, hardness and tribological performance of Ti–Co laser clad coatings on titanium alloy (Ti–6Al–4V) was examined. Laser powers of 750 and 900 W were varied with constant scan speed of 1.2 m/min. A beam size of 3 mm and argon shield gas flow rate of 1.2 L/min were set as the operating laser parameters. Phase identification and morphological studies of the coatings were carried out using X-ray diffractometry (XRD) and scanning electron microscopy (SEM), respectively. Based on the results of laser process optimisation, it was observed that both laser powers produced clad coatings with good metallurgical bond with no cracks or pores in the coatings. With respect to the substrate (Ti–6Al–4V), the microstructure, hardness and friction/wear behaviour of Ti–Co coatings on Ti–6Al–4V substrate were enhanced obviously.  相似文献   

7.
In order to improve the tribological properties of titanium-based implants, sodium hydroxide (NaOH), hydrogen peroxide (H2O2) solutions, sol–gel hydroxyapatite (HA) film, thermal treatment and combined methods of NaOH solution/HA film, H2O2 solution/HA film are used to modify the surfaces of Ti–6Al–4V (coded TC4). The chemical states of some typical elements in the modified surfaces were detected by means of X-ray photoelectron spectroscopy (XPS). The tribological properties of modified surfaces sliding against an AISI52100 steel ball were evaluated on a reciprocating friction and wear tester. As the results, complex surfaces with varied components are obtained. All the methods are effective in improving the wear resistance of Ti–6Al–4V in different degrees. Among all, the surface modified by the combined method of NaOH solution/HA film gives the best tribological performances. The friction coefficient is also greatly reduced by the modification of NaOH solution. The order of the wear resistance under 3 N is as following: Ti–NaOH–HA>Ti–NaOH>Ti–HA>Ti–H2O2–HA>Ti–H2O2 >Ti–500; under 1 N is Ti–HA, Ti–NaOH–HA>Ti–NaOH. For Ti–H2O2, a very low friction coefficient and long wear life over 2000 passes is obtained under 1 N. SEM observation of the morphologies of worn surfaces indicates that the wear of TC4 is characteristic of abrasive wear. Differently, abrasion, plastic deformation and micro–crack dominate the wear of Ti–HA; slight abrasive wear dominate the wear mechanism of Ti–NaOH and microfracture and abrasive wear for Ti–NaOH–HA and Ti–H2O2–HA, while the sample modified by thermal treatment is characterized by sever fracture. The superior friction reduction and wear resistance of HA films are greatly attributed to the slight plastic deformation of the film. NaOH solution is superior in improving the wear resistance and decreasing the friction coefficient under relative higher load (3 N) and H2O2 is helpful to reduce friction and wear under relatively lower load (1 N). Combined method of Ti–NaOH–HA is suggested to improve the wear resistance of Ti–6Al–4V for medial applications under fretting situations.  相似文献   

8.
Dry sliding wear tests were performed for Ti–6Al–4V alloy on a pin-on-disc wear tester. The wear behavior of Ti–6Al–4V alloy at sliding velocities of 0.5–4 m/s was studied and the tribo-oxides and their function were explored. Ti–6Al–4V alloy presented a marked variation of wear rate as a function of velocity. With the rise and fall of wear rate, Ti–6Al–4V alloy underwent the transitions of wear mechanisms from the combination of delamination wear and oxidative wear at lower speeds to delamination wear at 2.68 m/s, and then to oxidative wear at 4 m/s. These phenomena were attributed to the appearance and disappearance of tribo-oxides. In spite of trace or a small amount, tribo-oxides would change the wear behavior, and even wear mechanism.  相似文献   

9.
A duplex treatment involving nitrogen ion pre-implantation and gradient interfacial transition was performed to obtain a high-performance graphite-like carbon (GLC) coating on a Ti6Al4V alloy. Characteristics of the as-deposited coating systems were systemically investigated by Raman spectrometry, scanning electron microscopy, atomic force microscopy, nano-indentation, and scratch tests. The friction and wear behaviors in distilled water and sea water environments were evaluated by a ball-on-disk tribometer. The results showed that the GLC multilayer coating on nitrogen ion-implanted Ti6Al4V possessed a greater hardness and adhesion strength than to that on un-implanted Ti6Al4V. The tribological performances of these duplex process systems showed a great improvement in both the distilled water and sea water environments. In particular, the Cr/CrN/GLC coatings on nitrogen ion-implanted substrates demonstrated the best friction and wear behaviors. These striking improvements were attributed to the greatly enhanced interface strength between substrate and coating by the nitrogen ion implantation process and improved adhesion strength between gradient layers by the appropriate gradient interlayers with a similar thermal expansion coefficient.  相似文献   

10.
W. Ma  J. Lu  B. Wang 《Wear》2009,266(11-12):1072-1081
Cu–graphite composite fabricated by powder metallurgy art is no longer novel material. However, it might be a versatile self-lubricating material sliding against different metals and alloys. In this connection, understanding towards its tribological behavior and wear mechanism is very important. Sliding tribological behaviors of Cu–graphite composite against different counterparts, specified as 2024 aluminium alloy, AZ91D magnesium alloy, and Ti6Al4V titanium alloy, were investigated over varied sliding speeds at room temperature in air. The friction and wear tests were conducted on a pin-on-disk tribo-meter. Tribological performance of Cu–graphite composite strongly depended on its counterpart materials. Cu–graphite composite could provide friction reduction in sliding against 2024 and Ti6Al4V. Cu–graphite composite was a good self-lubricating material in sliding against AZ91D at low speeds but not at 0.25 and 0.50 m/s. Wear mechanism of Cu–Gr composite was related to the transfer, counter-transfer, mechanical mixing and tribo-oxidation at tribo-interface. Sliding speed had influences on tribo-interface and thereby wear mechanism. Finally, the effects of naturally occurred oxide film and sliding speed were discussed.  相似文献   

11.
Influences of newborn calf serum on the fretting behaviors of Ti–6Al–4V and diamond-like carbon coating were investigated using a fretting-wear test rig with a cylinder-on-flat contact. The results indicated that, for the Ti–6Al–4V/Ti–6Al–4V contact, the friction coefficients were high (0.8–1.2) and the wear volumes presented an increase with the increase in the displacement amplitude under dry laboratory air conditions. Under serum-liquid conditions, the Ti–6Al–4V/Ti–6Al–4V contact presented significantly larger wear volumes under the displacement of ±?40 µm; however, it presented significantly lower friction coefficients (0.25–0.35) and significantly smaller wear volumes under the displacement of ±?70 µm. For the DLC coating/Ti–6Al–4V contact, the coating response wear maps could be divided into two areas: the coating working area (low normal force conditions) and the coating failure area (high normal force conditions). In the coating working area, the DLC coating could protect the substrate with low friction, low wear volume, and mild damage in the coating. The presence of serum had a positive influence on the tribological performance of the DLC coating. Furthermore, the positive influence was more significant under larger displacement amplitudes condition.  相似文献   

12.
ABSTRACT

Ti–6Al–4V alloy exhibit a unique combination of mechanical, physical, and chemical properties; that pronounced its desirability for implementation in the fields of aerospace, automobile, and chemical industries. The mechanisms, namely, strain rate response/adiabatic shear band (ASB) – effect of plastic deformation, tribo-chemical reaction and formation of the mechanically mixed layer (MML), can control wear behaviour of the alloy. Hence, the present work investigates the influence of these mechanisms in governing the tribological characteristics of the Ti6Al4V alloy aganist SS316L steel. The experiments were executed on a pin-on-disc tribometer under vacuum (2?×?10?5?Torr), by varying the temperature (25, 100, 200, 300 and 400°C) at constant sliding speed (0.01?ms?1) and load (137.3?N) conditions. Compression test was carried out at distinct strain rate (0.001 and 10 s?1) and temperature (25, 100 and 400°C) values, to investigate the occurrence of ASB. The scanning electron microscopy and energy dispersive X-ray spectroscopy analyses were used to evaluate the formation of appendage layers (oxides and MML) and the composition of wear debris, respectively. The wear rate of the Ti–6Al–4V alloy decreased with increment in temperature (room condition to 400°C) inside vacuum environ, governed by ASB and the presence of oxide layers.  相似文献   

13.
A.F. Yetim  Y. Vangolu  A. Celik 《Wear》2009,267(12):2179-1962
Different kinds of diffusion processes, plasma nitriding, oxidizing and oxynitriding as of a combination of other two, have been applied to Ti6Al4V alloy to evaluate the effect of treatment times (1 and 4 h) and temperatures (650 and 750 °C) on wear properties of the alloy. It was observed that a hard modified layer was produced on the surface of the alloy after each diffusion process. While TiN and Ti2N phases form in the modified layer with plasma nitriding, mainly TiO2 phase forms after plasma oxidizing treatment. The wear tests performed at different normal loads showed that all treated samples, except for nitrided and oxidized at 650 °C for 1 h, exhibited higher wear resistance than untreated Ti6Al4V alloy. The plasma nitrided samples showed adhesive wear. On the other hand, while the plasma oxidizing samples displayed adhesive wear at lower loads, wear mechanism changed to abrasive wear as the load increased because the oxide film which covers the surface was broken during the sliding at higher loads.  相似文献   

14.
The microstructure, chemical and phase composition of the hard Ni‐P‐Ti layer formed on the Ti‐6Al‐4V alloy after duplex surface treatment were investigated by light microscopy, X‐ray diffraction, scanning electron microscopy and analytical/high‐resolution transmission electron microscopy. These investigations showed that the improved mechanical and tribological properties of the surface‐treated alloy were related to the presence of a multilayered microstructure containing several phases from the Ni‐Ti‐P‐Al system.  相似文献   

15.
316L stainless steel and Ti6Al4V alloy were plasma nitrided at different treatment parameters, and the wear behaviors of the modified layers formed on the surface during nitriding were investigated by multi-pass scratch test. Phase structure and cross-sections of modified layers were also examined with XRD and SEM. While a single modified layer formed on surface of the 316L stainless steel, both modified and diffusion layers were observed on the surface of the Ti6Al4V alloy after nitriding. As a result, it was observed that phase structure and thickness for modified layers of 316L stainless steel and Ti6Al4V alloy, respectively, were the significant parameters for friction coefficient and wear rate. In addition, diffusion layer formed during the nitriding process caused on increase of wear resistance of Ti6Al4V alloy by supporting the modified layer on the surface.  相似文献   

16.
S. Hiromoto  S. Mischler 《Wear》2006,261(9):1002-1011
The effects of collagen and albumin on the fretting-corrosion behaviour of a Ti6Al4V alloy contacting an Al2O3 counter-piece was investigated in pH buffered saline solutions at 37 °C using a tribo-electrochemical apparatus. Phosphate ion and hydroxyethyl-piperazinyl-ethanesulfonic acid (HEPES) were used as the pH buffer agents. Tests were conducted under two applied electrochemical potentials and two loads. Potentiodynamic polarisation curves were measured to assess the effect of proteins and pH buffer agents on the corrosion behaviour. Surfaces were characterised by XPS analysis, secondary electron spectroscopy and laser profilometry.Fretting wear of the Ti6Al4V alloy increased with increasing applied potential and load but was not significantly affected by the presence of collagen or albumin. Only a small lubricant effect of collagen could be observed at cathodic potentials. In phosphate buffer saline (PBS) solutions, those proteins were found to act as cathodic inhibitor by shifting the corrosion potential and the cathodic current towards more cathodic values. Phosphate ions were found to be incorporated on the Ti6Al4V alloy and to cause sedimentation of wear particles around the wear trace. In HEPES solutions wear particles were dispersed away from the wear trace.  相似文献   

17.
The low hardness and poor tribological performance of aluminum alloy as moving component greatly restricts their wide applications in automotive fields. In this letter, an attempt to deposit gradient Ti/TiN/Si/(TiC/a-C:H) multi-layer on aluminum alloy is thus effectively performed by a combined arc ion plating and magnetron sputtering process based on the concept of involving coatings with a functionally graded interface. Multi-layered structure within DLC-based coatings has shown to significantly improve the load-bearing capacity, anti-wear and self-lubricating ability of Al alloys. The friction coefficient of gradient DLC-based coatings decreased to 0.18 under dry sliding condition while kept at 0.05 under the oil-lubricated conditions. The wear rate of gradient DLC multilayers was lower by two and even three orders of magnitude when compared with Al alloys both under dry wear and oil-lubricated conditions. Such gradient DLC-based coatings with good adhesion strength, high hardness, and excellent tribological performance are considered as potential protective surfaces of Al alloys for engine parts.  相似文献   

18.
利用Optimal SRV高温摩擦磨损试验机,研究干摩擦条件下钛合金(Ti6Al4V)对硬质合金(WC-Co)的摩擦学性能.研究了载荷、温度与滑动速度对摩擦过程的影响,通过磨损区微观形貌表征分析了磨损机理.结果表明:Ti6Al4V与WC-Co的摩擦系数波动剧烈,产生了严重的黏滑摩擦,且随着载荷、温度与滑动速度的增加,黏...  相似文献   

19.
In this study, comparative investigation of (i) untreated Ti–6Al–4V alloy, (ii) nanoporous thin TiO2 layer formed by controlled anodic oxidation and (iii) electrodeposited hydroxyapatite coatings into porous oxide layer was carried out for evaluation of sliding-wear performances in a bio-simulated environment. Wear mechanisms, wear volumes and friction coefficients of the three types of surfaces under lubricated conditions in a bio-simulated solution were recorded and analyzed. The results presented herein show that, under the investigated tribocorrosion conditions (under reciprocating sliding), both surface treatments applied have improved the wear resistance and friction coefficients as compared to the untreated Ti–6Al–4V alloy surface.  相似文献   

20.

In this study, Ta2O5, TiN, and TiO2 are coated with magnetron sputtering method as monolayer and bilayer on Ti6Al4V alloy used in biomedical applications. The deposited coatings are characterized, and their mechanical properties are determined by nanoindentation tests. As a result of the pin-on disc wear test performed in dry environment and room temperature, in vitro corrosion test was applied to the samples with high wear resistance, and the information about the tribological properties was obtained. Experimental results show that the existence of the intermediate layer has also significant effect on the corrosion resistance of the coatings. The biocompatibility of the Ta2O5/TiO2 coating was examined by keeping it in simulated body fluid (SBF) due to its noticeable wear and corrosion resistance properties, the growth of apatite, which is described as an indicator of biocompatibility, occurred on the sample surface after 7 day.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号