首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Recently, various immunosuppressant drugs have been shown to induce hair growth in normal hair as well as in alopecia areata and androgenic alopecia; however, the responsible mechanism has not yet been fully elucidated. In this study, we investigate the influence of mycophenolate (MPA), an immunosuppressant, on the proliferation of human dermal papilla cells (hDPCs) and on the growth of human hair follicles following catagen induction with interferon (IFN)-γ. IFN-γ was found to reduce β-catenin, an activator of hair follicle growth, and activate glycogen synthase kinase (GSK)-3β, and enhance expression of the Wnt inhibitor DKK-1 and catagen inducer transforming growth factor (TGF)-β2. IFN-γ inhibited expression of ALP and other dermal papillar cells (DPCs) markers such as Axin2, IGF-1, and FGF 7 and 10. MPA increased β-catenin in IFN-γ-treated hDPCs leading to its nuclear accumulation via inhibition of GSK3β and reduction of DKK-1. Furthermore, MPA significantly increased expression of ALP and other DPC marker genes but inhibited expression of TGF-β2. Therefore, we demonstrate for the first time that IFN-γ induces catagen-like changes in hDPCs and in hair follicles via inhibition of Wnt/β-catenin signaling, and that MPA stabilizes β-catenin by inhibiting GSK3β leading to increased β-catenin target gene and DP signature gene expression, which may, in part, counteract IFN-γ-induced catagen in hDPCs.  相似文献   

3.
Sepsis is characterized by multiple-organ dysfunction caused by the dysregulated host response to infection. Until now, however, the role of the Wnt signaling has not been fully characterized in multiple organs during sepsis. This study assessed the suppressive effect of a Wnt signaling inhibitor, Wnt-C59, in the kidney, lung, and liver of lipopolysaccharide-induced endotoxemic mice, serving as an animal model of sepsis. We found that Wnt-C59 elevated the survival rate of these mice and decreased their plasma levels of proinflammatory cytokines and organ-damage biomarkers, such as BUN, ALT, and AST. The Wnt/β-catenin and NF-κB pathways were stimulated and proinflammatory cytokines were upregulated in the kidney, lung, and liver of endotoxemic mice. Wnt-C59, as a Wnt signaling inhibitor, inhibited the Wnt/β-catenin pathway, and its interaction with the NF-κB pathway, which resulted in the inhibition of NF-κB activity and proinflammatory cytokine expression. In multiple organs of endotoxemic mice, Wnt-C59 significantly reduced the β-catenin level and interaction with NF-κB. Our findings suggest that the anti-endotoxemic effect of Wnt-C59 is mediated via reducing the interaction between β-catenin and NF-κB, consequently suppressing the associated cytokine upregulation in multiple organs. Thus, Wnt-C59 may be useful for the suppression of the multiple-organ dysfunction during sepsis.  相似文献   

4.
5.
Skullcapflavone II (SFII), a flavonoid derived from Scutellaria baicalensis, has been reported to have anti-inflammatory properties. However, its therapeutic potential for skin inflammatory diseases and its mechanism are unknown. Therefore, this study aimed to investigate the effect of SFII on TNF-α/IFN-γ-induced atopic dermatitis (AD)-associated cytokines, such as thymus- and activation-regulated chemokine (TARC) and macrophage-derived chemokine (MDC). Co-stimulation with TNF-α/IFN-γ in HaCaT cells is a well-established model for induction of pro-inflammatory cytokines. We treated cells with SFII prior to TNF-α/IFN-γ-stimulation and confirmed that it significantly inhibited TARC and MDC expression at the mRNA and protein levels. Additionally, SFII also inhibited the expression of cathepsin S (CTSS), which is associated with itching in patients with AD. Using specific inhibitors, we demonstrated that STAT1, NF-κB, and p38 MAPK mediate TNF-α/IFN-γ-induced TARC and MDC, as well as CTSS expression. Finally, we confirmed that SFII significantly suppressed TNF-α/IFN-γ-induced phosphorylation of STAT1, NF-κB, and p38 MAPK. Taken together, our study indicates that SFII inhibits TNF-α/IFN-γ-induced TARC, MDC, and CTSS expression by regulating STAT1, NF-κB, and p38 MAPK signaling pathways.  相似文献   

6.
Resveratrol is a natural polyphenolic compound that prevents inflammation in chondrocytes and animal models of osteoarthritis (OA) via yet to be defined mechanisms. The purpose of this study was to determine whether the protective effect of resveratrol on IL-1β-induced human articular chondrocytes was associated with the TLR4/MyD88/NF-κB signaling pathway by incubating human articular chondrocytes (harvested from osteoarthritis patients) with IL-1β before treatment with resveratrol. Cell viability was evaluated using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and TNFα levels in culture supernatants were measured by ELISA(Enzymelinked immunosorbent assay). The levels of TLR4 and its downstream signaling targets (MyD88 and TRAF6) and IL-1β were assessed by measuring the levels of mRNA and protein expression by real-time RT-PCR and western blot analysis, respectively, in addition to assessing NF-κB activation. In addition, TLR4 siRNA was used to block TLR4 expression in chondrocytes further demonstrating that resveratrol prevented IL-1β-mediated inflammation by TLR4 inhibition. We found that resveratrol prevented IL-1β-induced reduction in cell viability. Stimulation of chondrocytes with IL-1β caused a significant up-regulation of TLR4 and its downstream targets MyD88 and TRAF6 resulting in NF-κB activation associated with the synthesis of IL-1β and TNFα. These IL-1β-induced inflammatory responses were all effectively reversed by resveratrol. Furthermore, activation of NF-κB in chondrocytes treated with TLR4 siRNA was significantly attenuated, but not abolished, and exposure to resveratrol further reduced NF-κB translocation. These data suggested that resveratrol prevented IL-1β-induced inflammation in human articular chondrocytes at least in part by inhibiting the TLR4/MyD88/NF-κB signaling pathway suggesting that resveratrol has the potential to be used as a nutritional supplement to counteract OA symptoms.  相似文献   

7.
Idiopathic pulmonary fibrosis (IPF) is a chronic devastating disease with poor prognosis. Multiple pathological processes, including inflammation, epithelial mesenchymal transition (EMT), apoptosis, and oxidative stress, are involved in the pathogenesis of IPF. Recent findings suggested that nuclear factor-κB (NF-κB) is constitutively activated in IPF and acts as a central regulator in the pathogenesis of IPF. The aim of our study was to reveal the value of andrographolide on bleomycin-induced inflammation and fibrosis in mice. The indicated dosages of andrographolide were administered in mice with bleomycin-induced pulmonary fibrosis. On day 21, cell counts of total cells, macrophages, neutrophils and lymphocytes, alone with TNF-α in bronchoalveolar lavage fluid (BALF) were measured. HE staining and Masson’s trichrome (MT) staining were used to observe the histological alterations of lungs. The Ashcroft score and hydroxyproline content of lungs were also measured. TGF-β1 and α-SMA mRNA and protein were analyzed. Activation of NF-κB was determined by western blotting and electrophoretic mobility shift assay (EMSA). On day 21 after bleomycin stimulation, andrographolide dose-dependently inhibited the inflammatory cells and TNF-α in BALF. Meanwhile, our data demonstrated that the Ashcroft score and hydroxyproline content of the bleomycin-stimulated lung were reduced by andrographolide administration. Furthermore, andrographloide suppressed TGF-β1 and α-SMA mRNA and protein expression in bleomycin-induced pulmonary fibrosis. Meanwhile, andrographolide significantly dose-dependently inhibited the ratio of phospho-NF-κB p65/total NF-κB p65 and NF-κB p65 DNA binding activities. Our findings indicate that andrographolide compromised bleomycin-induced pulmonary inflammation and fibrosis possibly through inactivation of NF-κB. Andrographolide holds promise as a novel drug to treat the devastating disease of pulmonary fibrosis.  相似文献   

8.
Hypoxia-inducible factor (HIF)-2α is considered to play a major role in the progression of osteoarthritis. Recently, it was reported that pressure amplitude influences HIF-2α expression in murine endothelial cells. We examined whether hydrostatic pressure is involved in expression of HIF-2α in articular chondrocytes. Chondrocytes were cultured and stimulated by inflammation or hydrostatic pressure of 0, 5, 10, or 50 MPa. After stimulation, heat shock protein (HSP) 70, HIF-2α, nuclear factor kappa B (NF-κB), matrix metalloproteinase (MMP)-13, MMP-3, and vascular endothelial growth factor (VEGF) gene expression were evaluated. The levels of all gene expression were increased by inflammatory stress. When chondrocytes were exposed to a hydrostatic pressure of 5 MPa, HIF-2α, MMP-13, and MMP-3 gene expression increased significantly although those of HSP70 and NF-κB were not significantly different from the control group. In contrast, HIF-2α gene expression did not increase under a hydrostatic pressure of 50 MPa although HSP70 and NF-κB expression increased significantly compared to control. We considered that hydrostatic pressure of 5 MPa could regulate HIF-2α independent of NF-κB, because the level of HIF-2α gene expression increased significantly without upregulation of NF-κB expression at 5 MPa. Hydrostatic pressure may influence cartilage degeneration, inducing MMP-13 and MMP-3 expression through HIF-2α.  相似文献   

9.
10.
As a protective factor for lipopolysaccharide (LPS)-induced injury, 14-3-3γ has been the subject of recent research. Nevertheless, whether 14-3-3γ can regulate lactation in dairy cow mammary epithelial cells (DCMECs) induced by LPS remains unknown. Here, the anti-inflammatory effect and lactation regulating ability of 14-3-3γ in LPS-induced DCMECs are investigated for the first time, and the molecular mechanisms responsible for their effects are explored. The results of qRT-PCR showed that 14-3-3γ overexpression significantly inhibited the mRNA expression of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-1β (IL-1β) and inducible nitric oxide synthase (iNOS). Enzyme-linked immunosorbent assay (ELISA) analysis revealed that 14-3-3γ overexpression also suppressed the production of TNF-α and IL-6 in cell culture supernatants. Meanwhile, CASY-TT Analyser System showed that 14-3-3γ overexpression clearly increased the viability and proliferation of cells. The results of kit methods and western blot analysis showed that 14-3-3γ overexpression promoted the secretion of triglycerides and lactose and the synthesis of β-casein. Furthermore, the expression of genes relevant to nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPKs) and lactation-associated proteins were assessed by western blot, and the results suggested that 14-3-3γ overexpression inactivated the NF-κB and MAPK signaling pathways by down-regulating extracellular signal regulated protein kinase (ERK), p38 mitogen-activated protein kinase (p38MAPK) and inhibitor of NF-κB (IκB) phosphorylation levels, as well as by inhibiting NF-κB translocation. Meanwhile, 14-3-3γ overexpression enhanced the expression levels of β-casein, mammalian target of rapamycin (mTOR), ribosomal protein S6 kinase 1 (S6K1), serine/threonine protein kinase Akt 1 (AKT1), sterol regulatory element binding protein 1 (SREBP1) and peroxisome proliferator-activated receptor gamma (PPARγ). These results suggest that 14-3-3γ was able to attenuate the LPS-induced inflammatory responses and promote proliferation and lactation in LPS-induced DCMECs by inhibiting the activation of the NF-κB and MAPK signaling pathways and up-regulating mTOR signaling pathways to protect against LPS-induced injury.  相似文献   

11.
Boswellic acids, triterpenoids derived from the genus Boswellia (Burseraceae), are known for their anti-inflammatory and anti-tumor efficacy. Atopic dermatitis is a chronic, non-infectious inflammatory skin disease. However, the effects of α-boswellic acid on atopic dermatitis have not been studied. Therefore, in this study we examined the expression level of pro-inflammatory cytokines, histopathological analysis, and physiological data from BALB/c mice with atopic-like dermatitis induced by 2,4-dinitrochlorobenzene and TNF-α/IFN-γ-stimulated HaCaT cells to better understand the agent’s anti-atopic dermatitis efficacy. First, we found that α-boswellic reduced the epidermal thickening, mast cell numbers, and dermal infiltration of 2,4-dinitrochlorobenzene-induced atopic-like dermatitis in BALB/c mice. Furthermore, we also found that α-boswellic acid can restore transepidermal water loss and skin reddening in mice. In human keratinocytes inflamed by TNF-α/IFN-γ, α-boswellic acid inhibited MAP kinase activation and showed a reduction in NF-κB nuclear translocation. Finally, α-boswellic acid can reduce the expression level of cytokines (IL-1β, IL-6, and IL-8) following the stimulation of TNF-α/IFN-γ in HaCaT cells. Taken together, our study suggests that α-boswellic acids are a potential component for the development of anti-atopic dermatitis drugs.  相似文献   

12.
13.
Clinical outcomes of melanoma patients pointed out a gender disparity that supports a correlation between sex hormone activity on estrogen receptors (ER) and melanoma development and progression. Here, we found that the epithelial-to-mesenchymal transition (EMT) of melanoma cells induced by extracellular acidosis, which is a crucial hallmark of solid cancers, correlates with the expression of ERβ, the most representative ER on melanoma cells. Extracellular acidosis induces an enhanced expression of ERβ in female cells and EMT markers remain unchanged, while extracellular acidosis did not induce the expression of ERβ in male cells and EMT was strongly promoted. An inverse relationship between ERβ expression and EMT markers in melanoma cells of different sex exposed to extracellular acidosis was revealed by two different technical approaches: florescence-activated cell sorting of high ERβ expressing cell subpopulations and ERβ receptor silencing. Finally, we found that ERβ regulates EMT through NF-κB activation. These results demonstrate that extracellular acidosis drives a differential ERβ regulation in male and female melanoma cells and that this gender disparity might open new perspectives for personalized therapeutic approaches.  相似文献   

14.
15.
Human nasopharyngeal carcinoma (NPC) is a highly invasive cancer associated with proinflammation. Caspase-12 (Casp12), an inflammatory caspase, is implicated in the regulation of NF-κB-mediated cellular invasion via the modulation of the IκBα protein in NPC cells. However, the effect mechanisms of Casp12 need to be elucidated. NPC cells were transfected with the full length of human Casp12 cDNA (pC12) and the effect of human Casp12 (hCasp12) on the NF-κB activity was investigated. We found ectopic expression of hCasp12 increased the NF-κB activity accompanied by an increased p-IκBα expression and a decreased IκBα expression. Treatment of BMS, a specific IKK inhibitor, and pC12-transfected cells markedly decreased the NF-κB activity and ameliorated the expression level of IκBα reduced by hCasp12. Co-immunoprecipitation assays validated the physical interaction of hCasp12 with IKKα/β, but not with NEMO. Furthermore, the NF-κB activity of ΔCasp12-Q (a mutated catalytic of hCasp12) transfected cells was concentration-dependently induced, but lower than that of hCasp12-transfected cells. Importantly, the hCasp12-mediated NF-kB activity was enhanced by TNFα stimulation. That indicated a role of the catalytic motif of hCasp12 in the regulation of the NF-κB activity. This study indicated hCasp12 activated the NF-κB pathway through the activation of IKK in human NPC cells.  相似文献   

16.
The NF-κB pathway is central pathway for inflammatory and immune responses, and IKKγ/NEMO is essential for NF-κB activation. In a previous report, we identified the role of glycogen synthase kinase-3β (GSK-3β) in NF-κB activation by regulating IKKγ/NEMO. Here, we show that NEMO phosphorylation by GSK-3β leads to NEMO localization into multivesicular bodies (MVBs). Using the endosome marker Rab5, we observed localization into endosomes. Using siRNA, we identified the AAA-ATPase Vps4A, which is involved in recycling the ESCRT machinery by facilitating its dissociation from endosomal membranes, which is necessary for NEMO stability and NF-κB activation. Co-immunoprecipitation studies of NEMO and mutated NEMO demonstrated its direct interaction with Vps4A, which requires NEMO phosphorylation. The transfection of cells by a mutated and constitutively active form of Vps4A, Vps4A-E233Q, resulted in the formation of large vacuoles and strong augmentation in NEMO expression compared to GFP-Vps4-WT. In addition, the overexpression of the mutated form of Vps4A led to increased NF-κB activation. The treatment of cells with the pharmacologic V-ATPase inhibitor bafilomycin A led to a dramatic downregulation of NEMO and, in this way, inhibited NF-κB signal transduction. These results reveal an unexpected role for GSK-3β and V-ATPase in NF-κB signaling activation.  相似文献   

17.
18.
19.
Senescent cells secrete pro-inflammatory factors, and a hallmark feature of senescence is senescence-associated secretory phenotype (SASP). The aim of this study is to investigate the protein kinase CK2 (CK2) effects on SASP factors expression in cellular senescence and organism aging. Here CK2 down-regulation induced the expression of SASP factors, including interleukin (IL)-1β, IL-6, and matrix metalloproteinase (MMP) 3, through the activation of nuclear factor-κB (NF-κB) signaling in MCF-7 and HCT116 cells. CK2 down-regulation-mediated SIRT1 inactivation promoted the degradation of inhibitors of NF-κB (IκB) by activating the AKT-IκB kinase (IKK) axis and increased the acetylation of lysine 310 on RelA/p65, an important site for the activity of NF-κB. kin-10 (the ortholog of CK2β) knockdown increased zmp-1, -2, and -3 (the orthologs of MMP) expression in nematodes, but AKT inhibitor triciribine and SIRT activator resveratrol significantly abrogated the increased expression of these genes. Finally, antisense inhibitors of miR-186, miR-216b, miR-337-3p, and miR-760 suppressed CK2α down-regulation, activation of the AKT-IKK-NF-κB axis, RelA/p65 acetylation, and expression of SASP genes in cells treated with lipopolysaccharide. Therefore, this study indicated that CK2 down-regulation induces the expression of SASP factors through NF-κB activation, which is mediated by both activation of the SIRT1-AKT-IKK axis and RelA/p65 acetylation, suggesting that the mixture of the four miRNA inhibitors can be used as anti-inflammatory agents.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号