首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
2.
采用Gleeble-1500D热模拟试验机对一种含铁Ni3Al基合金进行了高温压缩试验,试验温度为1 050~1 150℃,应变速率为0.1~1.0s-1,工程应变量为50%。获得了不同变形条件下的真应力-真应变曲线,并分析了合金微观组织的变化。结果表明:合金的流变应力随着变形程度的增加先达到峰值应力,之后逐渐降低,趋于稳态流变。提高变形温度及减小应变速率能有效促进动态再结晶过程。在变形温度1 100℃以上,工程应变为50%时,能够获得完全再结晶的锻态组织。基体中的γ′相粒子对合金动态再结晶有抑制作用,β相的存在促进了相界处动态再结晶形核但抑制了完全动态再结晶晶粒的长大。高温下β相的软化效应和γ′相的回溶转变都有效提高了Ni3Al基合金热加工性能。  相似文献   

3.
A mathematical model has been developed to compute the changes in the austenite grain size during rolling in a hot-strip mill. The heat-transfer model described in the first of this series of papers has been employed to calculate the temperature distribution through the thickness which serves as a basis for the microstructure model. Single-and double-hit compression tests have been conducted at temperatures of 900 °C, 850°C, 950 °C, and 875 °C on 0.34 and 0.05 pct carbon steels to determine the degree of recrystallization by metallographic evaluation of quenched samples and by measuring the magnitude of fractional softening. The Institut de Recherches de la Sidérurgie Francaise, (IRSID) Saint Germain-en-Laye, France equation has been found to yield the best characterization of the observed recrystallization kinetics. The equations representing static recrystallization kinetics, recrystallized grain size, and grain growth kinetics have been incorporated in the model. The principle of additivity has been invoked to permit application of the isothermal recrystallization data to the nonisothermal cooling conditions. The model has been validated by comparing predicted austenite grain sizes with measurements made on samples quenched after one to four passes of rolling on the CANMET pilot mill. The austenite grain size evolution during rolling of a 0.34 pct carbon steel on Stelco’s Lake Erie Works (LEW) hot-strip mill has been computed with the aid of the model. The grain size decreased from an initial value of 180μm to 35μm in the first pass due to the high reduction of 46 pct. The changes in austenite grain size in subsequent passes were found to be small in comparison because of the lower per pass reductions. It has been shown that the equation employed to represent grain growth kinetics in the interstand region has a significant influence on the computed final grain size. Altering the rolling schedule had a negligible influence on the final grain size for a given finished gage. A 200°C increase in entry temperature to the mill resulted in a 20μm increase in final grain size, which is significant. This can be attributed to increased grain growth at the higher temperature. Formerly Graduate Student, The Centre for Metallurgical Process Engineering, The University of British Columbia Metallurgical transactions a  相似文献   

4.
Industrial mill logs from seven different hot strip mills (HSMs) were analyzed in order to calculate the mean flow stresses (MFSs) developed in each stand. The schedules were typical of the processing of microalloyed Nb, multiply-alloyed Cr-Mo, and plain C-Mn steels. The calculations, based on the Sims analysis, take into account work roll flattening, redundant strain, and the forward slip ratio. The measured stresses are then compared to the predictions of a model based on an improved Misaka MFS equation, in which solute effects, strain accumulation, and the kinetics of static recrystallization (SRX) and metadynamic recrystallization (MDRX) are fully accounted for. Good agreement between the measured and predicted MFSs is obtained over the whole range of rolling temperatures. The evolution of grain size and the fractional softening are also predicted by the model during all stages of strip rolling. Special attention was paid to the Nb steels, in which the occurrence of Nb(C, N) precipitation strongly influences the rolling behavior, preventing softening between passes. The present study leads to the conclusion that Mn addition retards the strain-induced precipitation of Nb; by contrast, Si addition has an accelerating effect. The critical strain for the onset of dynamic recrystallization (DRX) in Nb steels is derived, and it is shown that the critical strain/peak strain ratio decreases with increasing Nb content; furthermore, Mn and Si have marginal but opposite effects. It is demonstrated that DRX followed by MDRX occurs under most conditions of hot strip rolling; during the initial passes, it is due to high strains, low strain rates, and high temperatures, and, in the final passes, it is a consequence of strain accumulation.  相似文献   

5.
40Cr10Si2Mo钢的热变形模型及动态再结晶行为   总被引:1,自引:0,他引:1  
王庆娟  王钦仁  杜忠泽  何泽恩  党雪  齐泽江 《钢铁》2021,56(11):112-121
 为了优化马氏体耐热钢40Cr10Si2Mo的热轧生产工艺参数,建立线棒材轧制数字化设计及智能化系统数据库,在Gleeble-3500热模拟机上对马氏体耐热钢40Cr10Si2Mo进行单道次热压缩试验,研究了该钢在温度为900~1 100 ℃、应变速率为0.1~20 s-1条件下的应变补偿本构方程及动态再结晶行为,为探索塑性变形行为和组织优化提供理论依据。结果表明,应力随变形温度的升高而减小,随应变速率的增加而增加。温度和应变速率对热变形抗力(真应力)的影响主要取决于在塑性变形过程中,金属内部发生的加工硬化与动态回复、再结晶等软化机制交互作用的结果。建立了双曲正弦(Arrhenius)本构模型。对比发现所建立的本构模型预测值与试验值相关系数R2为0.983 97,平均相对误差(AARE)为4.531%。采用对σ-ε曲线进行4次多项式拟合并求导的方法,分析了40Cr10Si2Mo钢的软化过程以及不同温度和应变速率下动态再结晶的临界条件。阐述了动态再结晶的临界条件与lnZ(Zener-Hollomon参数)值的关系。发现40Cr10Si2Mo钢在lnZ值小于63时,动态再结晶的临界应变随lnZ值的增大而增大。在lnZ值大于63时,动态再结晶的临界应变随lnZ值的增大变化不明显。对比了40Cr10Si2Mo钢的微观组织,发现在1 100 ℃/0.1 s-1条件下晶粒发生了相互吞食合并,部分再结晶晶粒没有长大,最终导致混晶组织出现。然而增加应变速率有助于动态再结晶晶粒的细化。  相似文献   

6.
Using double-hit hot compression tests, the softening behavior of 304 H stainless steel was studied during unloading. The prestrains used were associated with the initiation of dynamic recrystallization (DRX) (ε c), the peak strain (ε p), 1/2 (ε c+ε p), the strain at maximum softening rate (ε i), and the onset of steady state flow (ε s). The following conditions of deformation were used: T=1000 °C, 1050 °C, and 1100 °C, =0.01 and 0.1 s−1, and delay times of 0.3 to 1000 seconds. To define the above important strains, single-hit hot compression tests were performed over a wider range of deformation conditions than the double-hit ones—i.e., 900 °C to 1100 °C and =0.01 to 1 s−1. The results show that a transition strain (ε*) separates the strain-dependent range of postdynamic softening from the strain-independent range. At strains between ε c and ε*, both metadynamic and static recrystallization contribute to interhit softening. The value of ε* obtained in this work was ε*=4/3 ε p. It was also found that the strain hardening rate was identical at all the critical strains (ε*) and took the value −22 MPa.  相似文献   

7.
This paper reports a study of the microstructural changes that occur when potassium-doped tungsten ingots are rolled at elevated temperatures. The effect of annealing on the microstructure of the rolled material is also considered. All samples were rolled on a Kocks mill. At low levels of deformation, the grain boundaries are primarily high-angle boundaries, and many grains are dislocation free. Both of these features probably result from dynamic recrystallization during rolling. As deformation increases, the grains become more elongated, and more low-angle boundaries are found within the material. Also, the potassium gets drawn into narrower and longer tubes. When these rolled rods are annealed at temperatures between 1275 ‡C and 1950 ‡C, several changes occur in the microstructure. The material undergoes abnormal grain growth. The temperature at which this occurs depends on the length of the anneal, the amount of de-formation the rod has received, and the spatial location in the rod. This spatial distribution most likely results from strain gradients that exist in the rolled rod. The abnormal grain growth is accompanied by a decrease in hardness. The potassium-containing tubes in the rod also break up into bubbles during annealing. The temperature at which this breakup occurs again depends on the length of the anneal and the amount of deformation.  相似文献   

8.
许云波  邓天勇  于永梅  王国栋 《钢铁》2007,42(11):69-73
在考虑动态、亚动态再结晶及静态再结晶的基础上,建立了X70管线钢的物理冶金模型,并应用于板带钢热连轧过程奥氏体再结晶、晶粒尺寸和流变应力的预测.结果表明,在合理的温度和压下条件下,应变累积可导致在精轧过程出现动态 亚动态再结晶行为,促进奥氏体晶粒的进一步细化.终轧温度的降低可引起奥氏体晶粒的粗化和残余应变的显著提高.建立了考虑晶粒尺寸和残余应变影响的平均流变应力(MFS)的人工神经网络预测模型,大大提高了热连轧过程MFS预测精度.  相似文献   

9.
The deformation and dynamic recrystallization behavior of Waspaloy-ingot material with coarse, columnar grains was established using isothermal uniaxial and double-cone compression tests. Testing was conducted along different test directions relative to the columnar-grain microstructure at supersolvus temperatures (1066 °C and 1177 °C) and strain rates (0.005 and 0.1 s−1), which bracket typical ingot-breakdown conditions for the material. The flow behavior of axial samples (i.e., those compressed parallel to the columnar-grain direction) showed an initial strain-hardening transient followed by steady-state flow. In contrast, the stress-strain curves of samples upset transverse to the columnar grains exhibited a peak stress at low strains, whose magnitude was greater than the steady-state flow stress of the axial samples, followed by flow softening. The two distinct flow behaviors were explained on the basis of the solidification texture associated with the starting ingot structure, differences in the kinetics of dynamic recrystallization revealed in the double-cone tests, and the evolution of deformation and recrystallization textures during hot working. Dynamic recrystallization kinetics were measurably faster for the transverse samples as well as specimens oriented at ∼45 deg to the forging direction, an effect partially rationalized based on the initial texture and its effect on the input rate of deformation work driving recrystallization. Despite these differences, the overall strains required for dynamic recrystallization were comparable to those measured previously for fine-grain (wrought) Waspaloy. However, the Avrami exponents (∼2 to 3) were somewhat higher than those for wrought material (∼1 to 2), an effect attributable to the particle-stimulated nucleation in the ingot material.  相似文献   

10.
The microstructure and texture of commercial purity aluminum (AA1050) have been investigated after cold rolling to von Mises strains of 3.6 to 6.4 followed by recovery and recrystallization during annealing. The evolution of structural parameters of the deformed microstructure, such as boundary spacing and fraction of high-angle boundaries (HABs), did not reach saturation in the given strain range. Recovery was accompanied by structural coarsening and by a decrease in the fraction of HABs. The coarsening rate increased with increasing strain prior to annealing. Recrystallization nuclei were found to form both in deformation zones around coarse particles and in recovered lamellar structures. The process of recrystallization in the present material can thus be characterized as discontinuous recrystallization. In recrystallized conditions, the average grain size was related to the grain orientation: the mean size of grains having orientations of the rolling texture was smaller than the size of grains with other orientations. The orientation dependence of the recrystallized grain size was more pronounced in the samples rolled to ultrahigh strains.  相似文献   

11.
The flow and fracture of MP35N (35 Co, 35 Ni, 20 Cr, 10 Mo) has been studied by uniaxial com-pression and plane strain bending in the temperature range 1000 to 1200 °C and strain rate range 0.01 to 10 s•1. This covers the normal bar rolling production conditions (∼1100 °C and 1 to 5 s“•1). The strain to fracture in plane strain bending was found to increase with increasing strain rate, roughly coinciding with the increase of the strain to the peak stress in the flow curves. Within most of the temperature and strain rate ranges investigated and under plane strain bending deformation conditions, microvoid nucleation was found to be concurrent with or greatly enhanced by the onset of dynamic recrystallization. Under these deformation conditions, flow concentration or localization along the soft layers of newly recrystallized grains oriented along the maximum shear stress directions near the surface generated microvoid nucleation and damage, in effect overriding the stress relieving and crack isolation effects normally associated with the occurrence of dynamic recrystallization. As the tem-perature was decreased toward 1000 °C and the strain rate was increased toward 10 s•1, an apparent transition to a microvoid nucleation mode by wedge cracking was observed, even at the maximum rate of 10 s•1. A further decrease in deformation temperature to 900 °C at a strain rate of 10 s•1, however, removed all evidence of microvoid nucleation (of the wedge type or otherwise) as well as any trace of dynamic recrystallization within the maximum strain imposed in the plane strain bending tests.  相似文献   

12.
高钼不锈钢热变形软化行为微观组织研究   总被引:2,自引:0,他引:2  
徐有容  陈良生 《钢铁》2000,35(10):51-54,42
通过双道次热压缩实验,对00Cr20Ni18Mo6Cu「N」奥氏体不锈钢的静态回复再结晶和亚动态再结晶等过程进行了系统研究,建立了亚动态再结晶的动力学模型,分别得到了静态再结晶、亚动态再结晶的激活能;研究了道次间停留过程对最终的微观组织的影响,为该钢种实际轧制生产过程中的参数优化提供了依据。  相似文献   

13.
An integrated mathematical model is developed to predict the microstructure evolution of C-Mn steel during multipass hot rolling on the CSP production line,and the thermal evolution,the temperature distribution,the deformation,and the austenite recrystallization are simulated.The characteristics of austenite recrystallization of hot rolled C-Mn steel in the CSP process are also discussed.The simulation of the microstructure evolution of C-Mn steel ZJ510L during CSP multipass hot rolling indicates that dynamic recrystallization and metadynamic recrystallization may easily occur in the first few passes,where nonuniform recrystallization and inhomogeneous grain size microstructure may readily occur;during the last few passes,static recrystallization may occur dominantly,and the microstructure will become more homogeneous and partial recrystallization may occur at relatively low temperature.  相似文献   

14.
An investigation was undertaken to determine the influence of forge temperature, ram rate, and starting microstructure on the deformation characteristics of isothermally forged Ti-6A1-4V alloy. Both yielding and finish forge pressures were measured in the practical range of forge temperatures and ram rates. With the absence of die-chilling, the results obtained can be quantitatively related to the hot deformation properties. The yielding and finish forge pressures and the stress-strain relationship are strongly de-pendent on forge temperature, ram rate, and initial microstructure. Although the forge pressures do not vary significantly with strain, an apparent yield-drop was observed, particularly in the Β preforms. On the basis of the above experimental findings and the activation analysis, the rate-controlling deformation process under isothermal forgings is discussed with respect to the dynamic softening. Additional observation was made on dynamic recrystallization in the temperature range of 1500‡F (1089 K) to 1650‡F (1172 K). Structural features and tensile properties of isothermally forged material are also pre-sented.  相似文献   

15.
Ultrasonically consolidated 3003 aluminum alloy builds were prepared with constituent tapes by using a very high power ultrasonic additive manufacturing (UAM) process. Microstructures of interface and bulk regions were quantitatively characterized using the electron backscattered diffraction technique. The interface microstructure consists of equiaxed grains. The 〈111〉 crystallographic directions of these grains were aligned with the normal direction of the specimen, confirming a shear deformation mode at these regions. In addition, due to recrystallization, the density of low-angle grain boundaries also significantly decreased. In contrast, original elongated grains and partially recrystallized grains were observed in the bulk region of the tape. These elongated grains correspond to rolling texture components of face-centered-cubic materials. The preceding microstructure gradients are rationalized based on the accumulated thermomechanical cycles during processing.  相似文献   

16.
Plane strain compression tests were performed on a low-carbon steel from 550 °C to 700 °C (ferritephase range) at strain rates of 10 to 5 × 10−4 s−1, and the deformation microstructure evolution was investigated by means of scanning electron microscopy, transmission electron microscopy (TEM), and electron backscattered diffraction (EBSD). The results indicate that under the present deformation conditions, dynamic recrystallization of ferrite can occur in the low-carbon steel and lead to grain refinement. With increasing Zener-Hollomon parameter Z, the mechanism of this process changes from discontinuous dynamic recrystallization to continuous dynamic recrystallization; the turning point is approximately at Z=1 × 1016 s−1. The increase of parameter Z leads to the decrease of recrystallized grain size of ferrite under steady state of deformation, and can lead to the formation of ultrafine microstructures with average grain size of about 2 μm.  相似文献   

17.
采用光学显微镜、X射线衍射仪等分析了宁波钢铁有限公司生产的取向硅钢不同工序下的组织及织构演变规律.结果 表明:铸坯经过热轧后,沿着厚度方向组织不均匀;一次冷轧并经脱碳退火后,组织由条状纤维状变成等轴状的初次再结晶晶粒,初次再结晶平均晶粒尺寸为18.17 μm,织构主要以α织构和γ织构为主;在二次冷轧后,晶粒再次被压缩,转变为纤维状,织构主要为γ织构;经过高温退火后,发生二次再结晶,晶粒异常长大,晶粒尺寸达到厘米级,织构成分为单一且锋锐的Goss织构.  相似文献   

18.
 The hot deformation characteristics of GH4720Li alloy were studied at the temperature of 1100-1170 ℃ and strain rate of 001-1 s-1 using Gleeble hot compression tests. True stress-true strain curves and deformation microstructures were investigated. Constitutive equation was established using the hyperbolic law. Processing map for hot working was also developed on the basis of the variations of efficiency of power dissipation with temperature and strain rate. The results show that dynamic recrystallization is the dominant softening mechanism during hot deformation. Fully recrystallized grain is obtained at strain of 07 above 1130 ℃, and coarsening occurs above 1150 ℃. The mean deformation activation energy is determined to be 512 kJ/mol. According to the low activation energy value, high dissipation efficiency parameter and fine recrystallized microstructure, 1130 ℃ is chosen as the hot working temperature for GH4720Li alloy.  相似文献   

19.
Dynamic variations in grain structures and grain boundary characteristics of NiCrFe-based alloy 718 during hot uniaxial compression as well as stress relaxation after the compression were investigated in this article. An electron backscatter diffraction (EBSD) technique was used for the specimens that were compressed at temperatures of 1010 °C and 1066 °C and strain rates of 0.5 and 0.005 s−1, up to a strain of 0.7. Stress relaxation was observed by keeping the upper die in position at the test temperatures as soon as the compression was completed. The variations in the CSL boundary distribution and in the misorientation angle distribution during compression and stress relaxation were thoroughly analyzed to characterize the dynamically recrystallized grain (DRX) boundaries. During deformation at a high strain rate of 0.5 s−1, dynamically recrystallized grains were formed by progressive subgrain rotation. Active dynamic recovery (DRV) at 1066 °C was inferred from the similar degree of strain softening in spite of the different fraction of dynamic recrystallization, which is supported by the high frequency of low misorientation angle boundaries. Stress relaxation was caused by a coalescence of subgrains having very small misorientation angles. Directional grain growth and a redistribution of the grain boundary character caused by the grain rotation occur during the stress relaxation, resulting in reduced total boundary energy. This article is based on a presentation made in the symposium entitled “Processing and Properties of Structural Materials,” which occurred during the Fall TMS meeting in Chicago, Illinois, November 9–12, 2003, under the auspices of the Structural Materials Committee.  相似文献   

20.
通过金相显微镜(OM)、扫描电子显微镜(SEM)等测试手段,在Gleeble-1500热模拟机上研究了粗晶EW75镁合金热变形行为,变形温度为723 K、应变速率为0.05 s-1,最大变形程度为80%的条件下,根据结果分析了合金高温变形时的真应力-真应变曲线以及不同变形量的显微组织,揭示了合金在变形过程中孔洞产生及消失的机制。结果表明:铸态合金平均晶粒尺寸约为149μm,均匀化后合金平均晶粒尺寸达到197μm左右;真应力-真应变曲线呈现出典型的动态再结晶特征;变形量为40%,原始大晶粒被细小再结晶晶粒包围,呈现典型的"项链"状特征,在局部晶粒交结处出现孔洞,随着变形量的增加,孔洞先长大后变小,当变形量达到80%时,孔洞基本消失愈合,愈合区有细小的再结晶的晶粒,形成明显的愈合带;大尺寸晶粒间的相互协调性能较差是变形出现孔洞的主要原因,随着变形量的增加,再结晶比例的提高带来的变形协调性能增强,孔洞最终被压扁,重新接触的两表面存在较高的能量,最终发生完全动态再结晶是合金孔洞愈合机制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号