首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we propose techniques of surface electromyographic (EMG) signal detection and processing for the assessment of muscle fiber conduction velocity (CV) during dynamic contractions involving fast movements. The main objectives of the study are: 1) to present multielectrode EMG detection systems specifically designed for dynamic conditions (in particular, for CV estimation); 2) to propose a novel multichannel CV estimation method for application to short EMG signal bursts; and 3) to validate on experimental signals different choices of the processing parameters. Linear adhesive arrays of electrodes are presented for multichannel surface EMG detection during movement. A new multichannel CV estimation algorithm is proposed. The algorithm provides maximum likelihood estimation of CV from a set of surface EMG signals with a window limiting the time interval in which the mean square error (mse) between aligned signals is minimized. The minimization of the windowed mse function is performed in the frequency domain, without limitation in time resolution and with an iterative computationally efficient procedure. The method proposed is applied to signals detected from the vastus laterialis and vastus medialis muscles during cycling at 60 cycles/min. Ten subjects were investigated during a 4-min cycling task. The method provided reliable assessment of muscle fatigue for these subjects during dynamic contractions.  相似文献   

2.
In this letter, we propose the application of the generalized eigenvalue decomposition for the decomposition of multichannel electrocardiogram (ECG) recordings. The proposed method uses a modified version of a previously presented measure of periodicity and a phase-wrapping of the RR-interval, for extracting the “most periodic” linear mixtures of a recorded dataset. It is shown that the method is an improved extension of conventional source separation techniques, specifically customized for ECG signals. The method is therefore of special interest for the decomposition and compression of multichannel ECG, and for the removal of maternal ECG artifacts from fetal ECG recordings.   相似文献   

3.
A device for long-term monitoring of muscle activity (EMG) with surface electrodes and method of its application are described in this paper. This device is called a microcomputer two-channel EMG monitor. The device can be used for up to 24 h monitoring of EMG activity, followed by data transfer to a host computer for signal analysis. This device records amplified, rectified, and integrated EMG activity. Shorter recording time allows shorter sampling periods suitable for different other EMG analysis. Recording of spontaneous EMG in complete spinal cord injured subjects was the original reason for the design of the long-term monitor. These recordings were used for estimation of spasticity in complete spinal cord patients.  相似文献   

4.
Removing artifacts and background electroencephaloraphy (EEG) from multichannel interictal and ictal EEG has become a major research topic in EEG signal processing in recent years. We applied for this purpose a recently developed subspace-based method for modeling the common dynamics in multichannel signals. When the epileptiform activity is common in the majority of channels and the artifacts appear only in a few channels the proposed method can be used to remove the latter. The performance of the method was tested on simulated data for different noise levels. For high noise levels the method was still able to identify the common dynamics. In addition, the method was applied to real life EEG recordings containing interictal and ictal activity contaminated with muscle artifact. The muscle artifacts were removed successfully. For both the synthetic data and the analyzed real life data the results were compared with the results obtained with principal component analysis (PCA). In both cases, the proposed method performed better than PCA.  相似文献   

5.
Decomposition of multiunit electromyographic signals   总被引:5,自引:0,他引:5  
We have developed a comprehensive technique to identify single motor unit (SMU) potentials and to decompose overlapped electromyographic (EMG) signals into their constituent SMU potentials. This technique is based on one-channel EMG recordings and is easily implemented for many clinical EMG tests. There are several distinct features of our technique: 1) it measures waveform similarity of SMU potentials in the wavelet domain, which gives this technique significant advantages over other techniques; 2) it classifies spikes based on the nearest neighboring algorithm, which is less sensitive to waveform variation; 3) it can effectively separate compound potentials based on a maximum signal energy deduction algorithm, which is fast and relatively reliable; and 4) it also utilizes the information on discharge regularities of SMU's to help correct possible decomposition errors. The performance of this technique has been evaluated by using simulated EMG signals composed of up to eight different discharging SMU's corrupted with white noise, and also by using real EMG signals recorded at levels up to 50% maximum voluntary contraction. We believe that it is a very useful technique to study SMU discharge patterns and recruitment of motor units in patients with neuromuscular disorders in clinical EMG laboratories.  相似文献   

6.
Identification of the innervation zone is widely used to optimize the accuracy and precision of noninvasive surface electromyography (EMG) signals because the EMG signal is strongly influenced by innervation zones. However, simply structured fusiform muscle, such as biceps brachii muscle, has been employed mainly due to the simplicity with which the propagation from raw EMG signals can be observed. In this study, the optimum electrode location (OEL), free from innervational influence, was investigated by the propagation pattern of action potentials for brachii muscles and more complicated deltoid muscle structures using an automatized signal analysis technique. The technique employed newly developed computer software with additional clinical uses and minimized subjective differences. EMG signals were recorded using surface array electrodes during voluntary isometric contractions obtained from 12 healthy male subjects. Peaks in EMG signals were detected and averaged for each muscle. The propagation patterns and OEL were examined from biceps brachii muscles for all subjects and from deltoid muscles for seven subjects. The estimated locations were partially confirmed by comparing the root mean squares of the EMG signals. These results show that propagation patterns and OEL could be estimated simply and automatically even from the surface EMG signals of deltoid muscles.  相似文献   

7.
Complementary to its conventional applications, surface EMG is also suited to gain more detailed information on the functional state of a muscle, when measurement configurations with smaller pickup areas are used. A new category of suitable measurement configurations is obtained by application of the spatial filtering principle to electromyography. In a spatial filter unit, the signals of several recording electrodes are combined to form one output signal channel. The filter characteristic is determined by the weighting factors used and by the geometrical arrangement of the electrodes. Extended multielectrode arrays and multichannel recording make possible the detection of correlated excitations at different sites of the muscle. Even in high levels of muscle contraction, single motor unit impulses that are suitably shaped by filtering can be repeatedly recognized in the surface EMG signal. In clinical studies, pathologically shaped impulses have been identified indicating multiple innervation zones. The initiation and the propagation of excitation within single motor units can be detected with improved accuracy even from very small muscles.  相似文献   

8.
This paper presents a new approach to the decomposition of electromyographic (EMG) signals. EMG signals consist of a superposition of delayed finite-duration waveforms that carry the information about the firing of different muscle fiber groups. The new approach is based on a communication technical interpretation of the EMG signal. The source is modeled as a signaling system with intersymbol-interference, which encodes a well defined sparse information sequence. This point of view allows a maximum-likelihood (ML) as well as a maximum a posteriori (MAP) estimation of the underlying firing pattern to be made. The high accuracy attainable with the proposed method is illustrated both with measured and artificially generated EMG signals  相似文献   

9.
A constrained point-process filtering mechanism for prediction of electromyogram (EMG) signals from multichannel neural spike recordings is proposed here. Filters from the Kalman family are inherently suboptimal in dealing with non-Gaussian observations, or a state evolution that deviates from the Gaussianity assumption. To address these limitations, we modeled the non-Gaussian neural spike train observations by using a generalized linear model that encapsulates covariates of neural activity, including the neurons' own spiking history, concurrent ensemble activity, and extrinsic covariates (EMG signals). In order to predict the envelopes of EMGs, we reformulated the Kalman filter in an optimization framework and utilized a nonnegativity constraint. This structure characterizes the nonlinear correspondence between neural activity and EMG signals reasonably. The EMGs were recorded from 12 forearm and hand muscles of a behaving monkey during a grip-force task. In the case of limited training data, the constrained point-process filter improved the prediction accuracy when compared to a conventional Wiener cascade filter (a linear causal filter followed by a static nonlinearity) for different bin sizes and delays between input spikes and EMG output. For longer training datasets, results of the proposed filter and that of the Wiener cascade filter were comparable.  相似文献   

10.
We propose a novel method for estimation of muscle fiber conduction velocity from surface electromyographic (EMG) signals. The method is based on the regression analysis between spatial and temporal frequencies of multiple dips introduced in the EMG power spectrum through the application of a set of spatial filters. This approach leads to a closed analytical expression of conduction velocity as a function of the auto- and cross-spectra of monopolar signals detected along the direction of muscle fibers. The performance of the algorithm was compared with respect to that of the classic single dip approach on simulated and experimental EMG signals. The standard deviation of conduction velocity estimates from simulated single motor unit action potentials was reduced from 1.51 m/s [10 dB signal-to-noise ratio (SNR)] and 1.06 m/s (20 dB SNR) with the single dip approach to 0.51 m/s (10 dB) and 0.23 m/s (20 dB) with the proposed method using 65 dips. When 200 active motor units were simulated in an interference EMG signal, standard deviation of conduction velocity decreased from 0.95 m/s (10 dB SNR) and 0.60 m/s (20 dB SNR) with a single dip to 0.21 m/s (10 dB) and 0.11 m/s (20 dB) with 65 dips. In experimental signals detected from the abductor pollicis brevis muscle, standard deviation of estimation decreased from (mean +/- SD over 5 subjects) 1.25 +/- 0.62 m/s with one dip to 0.10 +/- 0.03 m/s with 100 dips. The proposed method does not imply limitation in resolution of the estimated conduction velocity and does not require any iterative procedure for the estimate since it is based on a closed analytical formulation.  相似文献   

11.
It is well known that a strong relationship exists between human voices and the movement of articulatory facial muscles. In this paper, we utilize this knowledge to implement an automatic speech recognition scheme which uses solely surface electromyogram (EMG) signals. The sequence of EMG signals for each word is modelled by a hidden Markov model (HMM) framework. The main objective of the work involves building a model for state observation density when multichannel observation sequences are given. The proposed model reflects the dependencies between each of the EMG signals, which are described by introducing a global control variable. We also develop an efficient model training method, based on a maximum likelihood criterion. In a preliminary study, 60 isolated words were used as recognition variables. EMG signals were acquired from three articulatory facial muscles. The findings indicate that such a system may have the capacity to recognize speech signals with an accuracy of up to 87.07%, which is superior to the independent probabilistic model.  相似文献   

12.
Electromyographic (EMG) recordings detected over the skin may be mixtures of signals generated by different active muscles due to the phenomena related to volume conduction. Separation of the sources is necessary when single muscle activity has to be detected. Signals generated by different muscles may be considered uncorrelated but in general overlap in time and frequency. Under certain assumptions, mixtures of surface EMG signals can be considered as linear instantaneous but no a priori information about the mixing matrix is available when different muscles are active. In this study, we applied blind source separation (BSS) methods to separate the signals generated by two active muscles during a force-varying task. As the signals are non stationary, an algorithm based on spatial time-frequency distributions was applied on simulated and experimental EMG signals. The experimental signals were collected from the flexor carpi radialis and the pronator teres muscles which could be activated selectively for wrist flexion and rotation, respectively. From the simulations, correlation coefficients between the reference and reconstructed sources were higher than 0.85 for signals largely overlapping both in time and frequency and for signal-to-noise ratios as low as 5 dB. The Choi-Williams and Bessel kernels, in this case, performed better than the Wigner-Ville one. Moreover, the selection of time-frequency points for the procedure of joint diagonalization used in the BSS algorithm significantly influenced the results. For the experimental signals, the interference of the other source in each reconstructed source was significantly attenuated by the application of the BSS method. The ratio between root-mean-square values of the signals from the two sources detected over one of the muscles increased from (mean +/- standard deviation) 2.33 +/- 1.04 to 4.51 +/- 1.37 and from 1.55 +/- 0.46 to 2.72 +/- 0.65 for wrist flexion and rotation, respectively. This increment was statistically significant. It was concluded that the BSS approach applied is promising for the separation of surface EMG signals, with applications ranging from muscle assessment to detection of muscle activation intervals, and to the control of myoelectric prostheses.  相似文献   

13.
This study analytically describes surface electromyogram (EMG) signals generated by a planar multilayer volume conductor constituted by different subdomains modeling muscle, bone (or blood vessel), fat, and skin tissues. The bone is cylindrical in shape, with a semicircular section. The flat portion of the boundary of the bone subdomain is interfaced with the fat layer tissue, the remaining part of the boundary is in contact with the muscle layer. The volume conductor is a model of physiological tissues in which the bone is superficial, as in the case of the tibia bone, backbone, and bones of the forearm. The muscle fibers are considered parallel to the axes of the bone, so that the model is space invariant in the direction of propagation of the action potential. The proposed model, being analytical, allows faster simulations of surface EMG with respect to previously developed models including bone or blood vessels based on the finite-element method. Surface EMG signals are studied by simulating a library of single-fiber action potentials (SFAP) of fibers in different locations within the muscle domain, simulating the generation, propagation, and extinction of the action potential. The decay of the amplitude of the SFAPs in the direction transversal to the fibers is assessed. The decay in the direction of the bone has a lower rate with respect to the opposite direction. Similar results are obtained by simulating motor unit action potentials (MUAPs) constituted by 100 fibers with territory 5 mm2. M waves and interference EMG signals are also simulated based on the library of SFAPs. Again, the decay of the amplitude of the simulated interference EMG signals is lower approaching the bone with respect to going farther from it. The findings of this study indicate the effect of a superficial bone in enhancing the EMG signals in the transversal direction with respect to the fibers of the considered muscle. This increases the effect of crosstalk. The same mathematical method used to simulate a superficial bone can be applied to simulate other physiological tissues. For example, superficial blood vessels (e.g., basilic vein, brachial artery) can influence the recorded EMG signals. As the electrical conductivity of blood is high (it is of the same order as the longitudinal conductivity in the muscle), the effect on EMG signals is opposite compared to the effect of a superficial bone.  相似文献   

14.
In the analysis of electromyographic (EMG) signals during dynamic movement, we have proposed an estimation algorithm for the time-varying parameters of an autoregressive model. The parameters correspond to less biased time-varying reflection coefficients. We determined the less biased estimation using a locally quasi-stationary model and named these parameters "k parameters." We estimated k parameters up to the fifth order for the surface EMG signals of a masseter muscle during rapid open-close movement of the lower jaw, a ballistic contraction, and fatigue. According to the results, the time courses of the k parameters displayed remarkable properties. In order to study the behavior of k parameters physiologically, we produced a muscle-structured simulation model based on anatomical and physiological data. The simulation results suggested that the behavior of the third parameter is related to the number of active motor units (MU's) at the shallow layer of a muscle. The detailed recruitment mechanism in terms of the MU's types has not yet been solved. Although further study is required, the parametric analysis using k parameters offers a new perspective for evaluation of muscle dynamics during several movements.  相似文献   

15.
We introduce a multiscale approach that combines segmentation with classification to detect abnormal brain structures in medical imagery, and demonstrate its utility in automatically detecting multiple sclerosis (MS) lesions in 3-D multichannel magnetic resonance (MR) images. Our method uses segmentation to obtain a hierarchical decomposition of a multichannel, anisotropic MR scans. It then produces a rich set of features describing the segments in terms of intensity, shape, location, neighborhood relations, and anatomical context. These features are then fed into a decision forest classifier, trained with data labeled by experts, enabling the detection of lesions at all scales. Unlike common approaches that use voxel-by-voxel analysis, our system can utilize regional properties that are often important for characterizing abnormal brain structures. We provide experiments on two types of real MR images: a multichannel proton-density-, T2-, and T1-weighted dataset of 25 MS patients and a single-channel fluid attenuated inversion recovery (FLAIR) dataset of 16 MS patients. Comparing our results with lesion delineation by a human expert and with previously extensively validated results shows the promise of the approach.  相似文献   

16.
Experimental electromyogram (EMG) data from the human biceps brachii were simulated using the model described in [10] of this work. A multichannel linear electrode array, spanning the length of the biceps, was used to detect monopolar and bipolar signals, from which double differential signals were computed, during either voluntary or electrically elicited isometric contractions. For relatively low-level voluntary contractions (10%-30% of maximum force) individual firings of three to four-different motor units were identified and their waveforms were closely approximated by the model. Motor unit parameters such as depth, size, fiber orientation and length, location of innervation and tendonous zones, propagation velocity, and source width were estimated using the model. Two applications of the model are described. The first analyzes the effects of electrode rotation with respect to the muscle fiber direction and shows the possibility of conduction velocity (CV) over- and under-estimation. The second focuses on the myoelectric manifestations of fatigue during a sustained electrically elicited contraction and the interrelationship between muscle fiber CV, spectral and amplitude variables, and the length of the depolarization zone. It is concluded that a) surface EMG detection using an electrode array, when combined with a model of signal propagation, provides a useful method for understanding the physiological and anatomical determinants of EMG waveform characteristics and b) the model provides a way for the interpretation of fatigue plots.  相似文献   

17.
In this paper, we propose a method for the analysis and classification of electroencephalogram (EEG) signals using EEG rhythms. The EEG rhythms capture the nonlinear complex dynamic behavior of the brain system and the nonstationary nature of the EEG signals. This method analyzes common frequency components in multichannel EEG recordings, using the filter bank signal processing. The mean frequency (MF) and RMS bandwidth of the signal are estimated by applying Fourier-transform-based filter bank processing on the EEG rhythms, which we refer intrinsic band functions, inherently present in the EEG signals. The MF and RMS bandwidth estimates, for the different classes (e.g., ictal and seizure-free, open eyes and closed eyes, inter-ictal and ictal, healthy volunteers and epileptic patients, inter-ictal epileptogenic and opposite to epileptogenic zone) of EEG recordings, are statistically different and hence used to distinguish and classify the two classes of signals using a least-squares support vector machine classifier. Experimental results, with 100 % classification accuracy, on a real-world EEG signals database analysis illustrate the effectiveness of the proposed method for EEG signal classification.  相似文献   

18.
The following is an investigation of the ability of the autoregressive (AR) model to describe the spectrum of the processes underlying the recorded surface EMG. Surface EMG (SEMG) spectrum is influenced by two major factors; one attributed to the motor units (MU) firing rate and the second, the higher frequency one, to the morphology of the action potentials (AP) traveling along the muscle fiber. In the present paper, SEMG measurements were carried out on the biceps brachii muscle with fixed surface electrodes arrangement and isotonic conditions. Sufficient averaging of 0.5 s segments enabled the identification of the low-frequency peak related to the firing rates of the MU's.  相似文献   

19.
The averaged instantaneous frequency (AIF) is proposed as an alternative method for the frequency analysis of surface electromyography (EMG) in the study of muscle fatigue during sustained, isometric muscle contractions. Results from performance analysis using experimental EMG signals demonstrate the low variability of the proposed frequency variable. Indeed, the AIF measure is shown to perform significantly better than the widely used mean and median frequency variables, in terms of robustness to the length of the analysis window.  相似文献   

20.
This paper outlines a method for automatic artefact removal from multichannel recordings of event-related potentials (ERPs). The proposed method is based on, firstly, separation of the ERP recordings into independent components using the method of temporal decorrelation source separation (TDSEP). Secondly, the novel lagged auto-mutual information clustering (LAMIC) algorithm is used to cluster the estimated components, together with ocular reference signals, into clusters corresponding to cerebral and non-cerebral activity. Thirdly, the components in the cluster which contains the ocular reference signals are discarded. The remaining components are then recombined to reconstruct the clean ERPs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号