首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, MgxM2 − xP2O7 (M = Cu, Ni; 0 ≤ x ≤ 2) and Mg3 − yNiy(PO4)2 (0 ≤ y ≤ 3) compositions were synthesized by the chemical coprecipitation method and characterized by X-ray diffraction, UV-vis-NIR spectroscopy and CIE L* a* b* (Commission Internationale de l’Eclairage L* a* b*) parameters measurements.Solid solutions with α-Cu2P2O7 and α-Ni2P2O7 structures and solid solutions with Ni3(PO4)2 structure were obtained from diphosphate and orthophosphate compositions respectively. Isostructurality of α-Ni2P2O7 and α-Mg2P2O7 structures enlarges the compositional range of solid solution formation respect to the MgxCu2 − xP2O7 solid solutions one.The CIE L* a* b* parameters in MgxNi2 − xP2O7 samples were obtained comparable with these parameters in others yellow materials suitable for ceramic pigments. Mg0.5Ni1.5P2O7 composition fired at 800 °C or 1000 °C is the optimal composition to obtain yellow materials with α-diphosphate structure in conditions of this study.  相似文献   

2.
Spherical Li[Ni0.4Co0.2Mn(0.4−x)Mgx]O2−yFy (x = 0, 0.04, y = 0, 0.08) with phase-pure and well-ordered layered structure have been synthesized by heat-treatment of spherical [Ni0.4Co0.2Mn0.4−xMgx]3O4 precursors with LiOH·H2O and LiF salts. The average particle size of the powders was about 10-15 μm and the size distribution was quite narrow due to the homogeneity of the metal carbonate, [Ni0.4Co0.2Mn(0.4−x)Mgx]CO3 (x = 0, 0.04) precursors. Although the Li[Ni0.4Co0.2Mn0.36Mg0.04]O1.92F0.08 delivered somewhat slightly lower initial discharge capacity, however, the capacity retention, interfacial resistance, and thermal stability were greatly enhanced comparing to the Li[Ni0.4Co0.2Mn0.4]O2 and Li[Ni0.4Co0.2Mn0.36Mg0.04]O2.  相似文献   

3.
Yuan Li  Jinhua Li 《Electrochimica acta》2007,52(19):5945-5949
Phase structure and electrochemical properties of the Ml1−xMgxNi2.80Co0.50Mn0.10Al0.10 (x = 0.08, 0.12, 0.20, 0.24, 0.28) (Ml = La-rich mixed lanthanide) alloys were studied. X-ray diffraction (XRD) analysis and Rietveld refinement show that the alloys consist mainly of LaNi5 and (La,Mg)Ni3 phase. Due to variation in phases of the alloys, the maximum discharge capacity, the high rate dischargeability (HRD), and the low temperature dischargeability increase first and then decrease. The maximum discharge capacity increases from 322 mAh g−1 (x = 0.08) to 375 mAh g−1 (x = 0.12), and then decreases to 351 mAh g−1 (x = 0.28) with increasing x. As the case of x = 0.20, HRD at 1200 mA g−1 and discharge capacity at 233 K reaches 41.7% and 256 mAh g−1, respectively. The cycling stability is improved by substituting La with Ml and B-site multi-alloying, and the capacity retention of Ml0.72Mg0.28Ni2.80Co0.50Mn0.10Al0.10 at the 200th cycle is 71%.  相似文献   

4.
Br-doped Li4Ti5O12 in the form of Li4Ti5O12−xBrx (0 ≤ x ≤ 0.3) compounds were successfully synthesized via solid state reaction. The structure and electrochemical properties of the spinel Li4Ti5O12−xBrx (0 ≤ x ≤ 0.3) materials were investigated. The Li4Ti5O12−xBrx (x = 0.2) presents the best discharge capacity among all the samples, and shows better reversibility and higher cyclic stability compared with pristine Li4Ti5O12, especially at high current rates. When the discharge rate was 0.5 C, the Li4Ti5O12−xBrx (x = 0.2) sample presented the excellent discharge capacity of 172 mAh g−1, which was very close to its theoretical capacity (175 mAh g−1), while that of the pristine Li4Ti5O12 was 123.2 mAh g−1 only.  相似文献   

5.
A series of Ni substituted spinel LiNixMn2−xO4 (0 ≤ x ≤ 0.5) have been synthesized to study the evolution of the local structure and their electrochemical properties. X-ray diffraction showed a few Ni cations moved to the 8a sites in heavily substituted LiNixMn2−xO4 (x ≥ 0.3). X-ray photoelectron spectroscopy confirmed Ni2+ cations were partially oxidized to Ni3+. The local structures of LiNixMn2−xO4 were studied by analyzing the and A1g Raman bands. The most compact [Mn(Ni)O6] octahedron with the highest bond energy of Mn(Ni)O was found for LiNi0.2Mn1.8O4, which showed a Mn(Ni)O average bond length of 1.790 Å, and a force constant of 2.966 N cm−1. Electrolyte decomposition during the electrochemical charging processes increased with Ni substitution. The discharge capacities at the 4.1 and 4.7 V plateaus obeyed the linear relationships with respect to the Ni substitution with the slopes of −1.9 and +1.9, which were smaller than the theoretical values of −2 and +2, respectively. The smaller slopes could be attributed to the electrochemical hysteresis and the presence of Ni3+ in the materials.  相似文献   

6.
The diopside ceramics with a formula of Ca(Mg1−xAlx)(Si1−x/2Alx/2)2O6 (x=0.01–0.3) were synthesized via a traditional solid-state reaction method, and their solid solubility, sintering behavior and microwave dielectric properties were investigated. The results revealed that the solubility limit of Al2O3 in Ca(Mg1−xAlx)(Si1−x/2Alx/2)2O6, which is defined as x, was between 0.15 and 0.2, and a second phase of CaAl2SiO6 presented when the x value reached 0.2. Appropriate Al3+ substitution for Mg2+ and Si4+ could promote the sintering process and lower the densification temperature, and a broadened densification temperature range of 1250–1300 °C was obtained for the compositions of x=0.08–0.15. With the increase of the x value, the dielectric constant (εr) increased roughly linearly, and the temperature coefficient of frequency (τf) showed a rising trend. The Q×f values increased from 57,322 GHz to 59,772 GHz as the x value increased from 0.01 to 0.08, and then they were saturated in the range of x=0.08–0.2. Further increase of the x value (x≥0.25) deteriorated the microwave dielectric properties. Good microwave dielectric properties of εr=7.89, Q×f=59,772 GHz and τf=−42.12 ppm/°C were obtained for the ceramics with the composition of x=0.08 sintered at 1275 °C.  相似文献   

7.
We report the effect of Cu2+ ion on CaAl2O4 with different molar concentrations of 0.0, 0.4 and 0.8 M prepared by simple combustion method. The materials have been characterized by X-ray diffraction (XRD), Fourier transform infrared spectra (FT-IR) and scanning electron microscopy (SEM). DC electrical conductivity has also been measured to study the electrical behavior of the materials. The XRD patterns confirm the formation of single-phase CaAl2O4 along with some impurity phases like CaAl4O7, CaAl12O19 and Ca12Al14O33. The FT-IR spectra show the stretching and bending vibrations of the synthesized compounds. DC electrical conductivity of the Ca1−xCuxAl2O4 is found to vary from 26.46 × 10−4 to 515.68 × 10−4 S cm−1 for x = 0.0 to x = 0.8 at the measuring temperature of 1000 °C. SEM images show the morphological features of the compounds.  相似文献   

8.
The electrochemical properties of substituted LiNi0.5Mn1.5−xMxO4 spinels at high potential (>4 V vs Li+/Li) have been investigated for M = Ti and Ru, in order to determine the role of the tetravalent cation in such systems where nickel is a priori the only electroactive species. These systems are found to form extended solid solutions (up to x = 1.3 and x = 1.0 for Ti and Ru, respectively) that were characterized by X-ray diffraction and Raman spectroscopy. Titanium substitution induces a drastic decrease in high potential electrochemical capacity, whereas the capacity is maintained and the kinetics are even improved in the presence of ruthenium. These results are completed by new results on the Li4−2xNi3xTi5−xO12 spinel system, which shows not any high potential activity in spite of the presence of up to 0.5 Ni2+ per spinel formula unit on the octahedral site. Taking into account previous data on LiNi0.5Ge1.5O4, we clearly show that even if the tetravalent cation does not participate in the overall redox reaction, electrochemical activity is only possible when nickel is surrounded by tetravalent cations able to accept a local variation of valence (Mn, Ru), whereas full-shell cations such as Ti4+ and Ge4+ block the necessary electron transfer pathways in the spinel oxide electrode.  相似文献   

9.
Li[Co1−zAlz]O2 (0 ≤ z ≤ 0.5) samples were prepared by co-precipitation and solid-state methods. The lattice constants varied smoothly with z for the co-precipitated samples but deviated for the solid-state samples above z = 0.2. The solid-state method may not produce materials with a uniform cation distribution when the aluminum content is large or when the duration of heating is too brief. Non-stoichiometric Lix[Co0.9Al0.1]O2 samples were synthesized by the co-precipitation method at various nominal compositions x = Li/(Co + Al) = 0.95, 1.0, 1.1, 1.2, 1.3. XRD patterns of the Lix[Co0.9Al0.1]O2 samples suggest the solid solution limit is between Li/(Co + Al) = 1.1 and 1.2. Electrochemical studies of the Li[Co1−zAlz]O2 samples were used to measure the rate of capacity reduction with Al content, found to be about −250 ± 30 (mAh/g)/(z = 1). Literature work on Li[Ni1/3Mn1/3Co1/3−zAlz]O2, Li[Ni1−zAlz]O2 and Li[Mn2−yAly]O4 demonstrates the same rate of capacity reduction with Al/(Al + M) ratio. These studies serve as baseline characterization of samples to be used to determine the impact of Al content on the thermal stability of delithiated Li[Co1−zAlz]O2 in electrolyte.  相似文献   

10.
Preparation of the (Ti1−xNbx)2AlC solid solution (formed from the Mn+1AXn or MAX carbides, where n = 1, 2, or 3, M is an early transition metal, A is an A-group element, and X is C) with x = 0.2-0.8 was investigated by self-propagating high-temperature synthesis (SHS). Nearly single-phase (Ti,Nb)2AlC was produced through direct combustion of constituent elements. Due to the decrease of reaction exothermicity, the combustion temperature and reaction front velocity decreased with increasing Nb content of (Ti1−xNbx)2AlC formed from the elemental powder compacts. In addition, the samples composed of Ti, Al, Nb2O5, and Al4C3 were adopted for the in situ formation of Al2O3-added (Ti,Nb)2AlC. The SHS process of the Nb2O5/Al4C3-containing sample involved aluminothermic reduction of Nb2O5, which not only enhanced the reaction exothermicity but also facilitated the evolution of (Ti,Nb)2AlC. Based upon the XRD analysis, two intermediates, TiC and Nb2Al, were detected in the (Ti,Nb)2AlC/Al2O3 composite and their amounts were reduced by increasing the extent of thermite reduction involved in the SHS process. The laminated microstructure characteristic of the MAX carbide was observed for both monolithic and Al2O3-added (Ti,Nb)2AlC solid solutions synthesized in this study.  相似文献   

11.
The effect of TiO2 on the formation and microstructure of magnesium aluminate spinel (MgAl2O4) at 1600 °C in air and reducing conditions were investigated. Under reducing conditions, stoichiometric MgAl2O4 spinel shifted toward alumina-rich types owing to volatilization of MgO, resulting in an increase in the porosity of fired samples. Addition of graphite to mixtures of MgO and Al2O3 intensified the reducing conditions and accelerated the formation of non-stoichiometric MgAl2O4. For TiO2-containing samples on addition of MgAl2O4, magnesium aluminum titanium oxide (MgxAl2(1−x)Ti(1+x)O5, x = 0.2 or 0.3) was detected as a minor phase. Under reducing conditions, XRD peak shifts were smaller for TiO2-containing samples than for samples without TiO2 owing to the formation of a solid solution of TiO2 in MgAl2O4 and establishment of alumina-rich spinel, which have opposite effects on increasing the lattice parameter. In bauxite-containing samples, MgAl2O4 spinel, corundum, magnesium orthotitanate spinel (Mg2TiO4) and amorphous phases were identified. Mg2TiO4 spinel formed a complete solid solution with MgAl2O4 spinel but Mg2TiO4 remained as a distinct phase owing to the heterogeneous microstructure of bauxite-containing samples. Also dense microstructure established in air fired TiO2 containing samples. The results are discussed with emphasis on the application and design of alumina-magnesia-carbon refractory materials, which are used in the steel industry.  相似文献   

12.
Layered Li[Li0.12NizMg0.32−zMn0.56]O2 oxide cathodes containing lithium atoms in the transition metal layers were synthesized and characterized using X-ray diffraction (XRD), galvanostatic cycling, and differential scanning calorimetry (DSC). The Li[Li0.12NizMg0.32−zMn0.56]O2 cathodes deliver a specific discharge capacity of about 190 mAh/g at room temperature and 236 mAh/g at 55 °C when cycled between 2.7 and 4.6 V versus Li/Li+. Excellent capacity retention and smooth potential profiles at room and elevated temperatures over extended cycles suggest that this material does not convert into a spinel structure.  相似文献   

13.
Li4AlxTi5−xFyO12−y compounds were prepared by a solid-state reaction method. Phase analyses demonstrated that both Al3+ and F ions entered the structure of spinel-type Li4Ti5O12. Charge-discharge cycling results at a constant current density of 0.15 mA cm−2 between the cut-off voltages of 2.5 and 0.5 V showed that the Al3+ and F substitutions improved the first total discharge capacity of Li4Ti5O12. However, Al3+ substitution greatly increased the reversible capacity and cycling stability of Li4Ti5O12 while F substitution decreased its reversible capacity and cycling stability slightly. The electrochemical performance of the Al3+-F-co-substituted specimen was better than the F-substituted one but worse than the Al3+-substituted one.  相似文献   

14.
Mg1−XNiXO solid solution powder samples with different chemical compositions were prepared by heating MgO–NiO mixtures at 1300 °C for 12 h in air. From XRD measurement, all powder samples were indexed as a single phase of cubic structure, of which the diffraction peaks shifted to high-angle side with the increase of doping amount of NiO. The pH values of the solution dispersed with the powder samples decreased when the doping amount of NiO in solid solution was increased. Antibacterial activity of the powder samples was examined by colony count method. In the result, the antibacterial activity of Mg1−XNiXO was remarkably weaker than original MgO powders, irrespective of the kind of bacteria. In addition, it was found that the antibacterial activity of Mg1−XNiXO reduced with increasing the doping amount of NiO. Two factors, the generated amount of O2 and the eluted amount of Ni2+ ions affected the antibacterial activity of Mg1−XNiXO solid solution. Especially, the stability of O2 in aqueous solution is dependent on pH value. Therefore, the strength of antibacterial activity was associated with the pH values in the dispersed solution of Mg1−XNiXO.  相似文献   

15.
NiFe2−xBixO4 (x = 0, 0.1, 0.15) nanopowders were synthesized via sol-gel method. The precursor gels were calcined at 773 K in air for 1 h to obtain the pure nanostructured NiFe2−xBixO4 spinel phase. The crystal structure and magnetic properties of the substituted spinel series of NiFe2−xBixO4 have been investigated by means of 57Fe Mössbauer spectroscopy, transmission electron microscopy and alternating gradient force magnetometry. Mössbauer spectroscopic measurements revealed that Bi3+ cations tend to occupy octahedral positions in the structure of the substituted ferrite, i.e., the crystal-chemical formula of the as-prepared nanoparticles may be written as: (Fe)[NiFe1−xBix]O4 (x = 0, 0.1, 0.15), where parentheses and square brackets enclose cations on sites of tetrahedral and octahedral coordination, respectively. Selective area electron diffraction studies provided evidence that the samples of the NiFe2−xBixO4 series, independently of x, exhibit the cubic spinel structure. The values of the saturation magnetization and the coercive field of NiFe2−xBixO4 nanoparticles were found to decrease with increasing degree of bismuth substitution.  相似文献   

16.
(Nd1−xGdx)2(Ce1−xZrx)2O7 (0 ≤ x ≤ 1.0) powders with an average particle size of 100 nm were synthesized with chemical-coprecipitation and calcination method, and were characterized by X-ray diffractometry and scanning electron microscopy. The sintering behaviour of (Nd1−xGdx)2(Ce1−xZrx)2O7 powders was studied by pressureless sintering at 1600–1700 °C for 10 h in air. The relative densities of (Nd1−xGdx)2(Ce1−xZrx)2O7 solid solutions increase with increasing the sintering temperature, and gradually decrease with increasing the content of neodymium and cerium at identical temperature levels. (Nd1−xGdx)2(Ce1−xZrx)2O7 solid solutions have a single phase of defect fluorite-type structure among all the composition combinations studied. The lattice parameters of (Nd1−xGdx)2(Ce1−xZrx)2O7 solid solutions agree well with the Vegard's rule.  相似文献   

17.
Y2−xLaxW3O12 solid solutions were successfully synthesized by the solid state reaction method. The microstructure, hygroscopicity and thermal expansion property of the resulting samples were investigated by X-ray diffraction (XRD), thermogravimetric analysis (TGA), field emission scanning electron microscopy (FESEM) and thermal mechanical analysis (TMA). Results indicate that the structural phase transition of the Y2−xLaxW3O12 changes from orthorhombic to monoclinic with increasing substituted content of lanthanum. The pure phase can form for 0≤x≤0.4 with orthorhombic structure and for 1.5≤x≤2 with monoclinic one. High lanthanum content leads to a low relative density of Y2−xLaxW3O12 ceramic. Thermal expansion coefficients of the Y2−xLaxW3O12 (0≤x≤2) ceramics also vary from −9.59×10−6 K−1 to 2.06×10−6 K−1 with increasing substituted content of lanthanum. The obtained Y0.25La1.75W3O12 ceramic shows almost zero thermal expansion and its average linear thermal expansion coefficient is −0.66×10−6 K−1 from 103 °C to 700 °C.  相似文献   

18.
The crystal structure, phase transition and thermal expansion behaviors of solid solutions Sc2−xCrxMo3O12 (0≤x≤2) were investigated using X-ray diffraction (XRD) and differential scanning calorimetry (DSC). At room temperature, samples with x≤0.7 and x≥0.8 crystallize in orthorhombic and monoclinic structures, respectively. DSC result indicates that the phase transition of Sc0.5Cr1.5Mo3O12 from monoclinic to orthorhombic structure occurs at 203.66 °C. The linear thermal expansion coefficient of orthorhombic phases varies from −2.334×10−6 °C−1 to 0.993×10−6 °C−1 when x increases from 0.0 to 1.5. The near-zero linear thermal expansion coefficients of −0.512×10−6 °C−1 and −0.466×10−6 °C−1 are observed for compounds with x=0.5 and 0.7, respectively.  相似文献   

19.
Mesoporous and nanosized cobalt aluminate spinel with high specific surface area was prepared using microwave assisted glycothermal method and used as soot combustion catalyst in a NOx + O2 stream. For comparison, zinc aluminate spinel and alumina supported platinum catalysts were prepared and tested. All samples were characterised using XRD, (HR)TEM, N2 adsorption–desorption measurements. The CoAl2O4 spinel was able to oxidise soot as fast as the reference Pt/Al2O3 catalyst. Its catalytic activity can be attributed to a high NOx chemisorption on the surface of this spinel, which leads to the fast oxidation of NO to NO2.  相似文献   

20.
The effect of La/Ce ratio on the structure and electrochemical characteristics of the La0.7−xCexMg0.3Ni2.8Co0.5 (x = 0.1, 0.2, 0.3, 0.4, 0.5) alloys has been studied systematically. The result of the Rietveld analyses shows that, except for small amount of impurity phases including LaNi and LaNi2, all these alloys mainly consist of two phases: the La(La, Mg)2Ni9 phase with the rhombohedral PuNi3-type structure and the LaNi5 phase with the hexagonal CaCu5-type structure. The abundance of the La(La, Mg)2Ni9 phase decreases with increasing cerium content whereas the LaNi5 phase increases with increasing Ce content, moreover, both the a and cell volumes of the two phases decrease with the increase of Ce content. The maximum discharge capacity decreases from 367.5 mAh g−1 (x = 0.1) to 68.3 mAh g−1 (x = 0.5) but the cycling life gradually improve. As the discharge current density is 1200 mA g−1, the HRD increases from 55.4% (x = 0.1) to 67.5% (x = 0.3) and then decreases to 52.1% (x = 0.5). The cell volume reduction with increasing x is detrimental to hydrogen diffusion D and accordingly decreases the low temperature dischargeability of the La0.7−xCexMg0.3Ni2.8Co0.5 (x = 0.1-0.5) alloy electrodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号