首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of grain size on the oxidation behavior of Cr2AlC at 1100 °C and 1200 °C for different times was investigated using fine grained (2 μm) and coarse grained (60 μm) samples. The two materials show a good oxidation resistance owing to the formation of a dense and continuous Al2O3 layer. The oxidation rate of the fine grained Cr2AlC is relatively faster than that of the coarse grained Cr2AlC. The microstructure and phase composition of scale was characterized. After oxidation at 1100 °C and 1200 °C for long times up to 100 h, only a dense and continuous α-Al2O3 oxide layer formed on both the fine grained and coarse grained Cr2AlC. However, after oxidation at 1100 °C for a relatively short 2 h period, a Cr7C3 compound was detected beneath the α-Al2O3 oxide layer on the coarse grained Cr2AlC, yet no Cr7C3 was found in the fine grained Cr2AlC. The oxidation mechanism of the fine and the coarse grained Cr2AlC was discussed.  相似文献   

2.
Mechanical milling (MM) has been adopted to develop Cr2Nb intermetallic precursor, required for the processing of Cu-Cr-Nb alloy. Process parameters have been optimized through particle characterisation of powders produced by different milling time and conditions. It has been observed that particle morphology and size change with milling time. A milling time of 15 h, followed by annealing at 1400 °C has been found to be optimum condition to result pure Cr2Nb powders with desired properties.  相似文献   

3.
The linear and mass ablation rates of Ti2AlC ceramics under an oxyacetylene flame at a temperature up to 3000 °C were examined by measuring the dimensions and weight change of the ablated samples. The linear ablation rate was decreased from 0.14 μm s−1 for the first 30 s of the ablation to 0.08 μm s−1 after 180 s. Ti2AlC ceramics gained small amounts of weight upon ablation, which is attributed to the formation of oxidation products on the ablated surface. The ablation surface exhibits a two-layer structure: an oxide outer layer, consisting mainly of α-Al2O3 and TiO2 and some Al2TiO5, and a porous sub-surface layer containing Ti2Al1−xC and TiCxOy. With increasing ablation time, the content of TiO2 and Al2TiO5 in the outer layer increased, and more pores developed in the sub-surface layer. The thermal oxidation of Ti2AlC under the flame and scouring of the viscous oxidation products by high-speed flow of gas torch are the main ablation mechanisms.  相似文献   

4.
Gas tunnel type plasma sprayed free-standing La2Zr2O7 coating specimens with a thickness of 300-400 μm were prepared under optimized operating conditions and were subjected to hot corrosion test in the presence of corrosive impurities such as V2O5, Na2SO4, and Na2SO4 + V2O5 mixtures (60:40 wt%) at two different temperatures for duration of 5 h, i.e. 1000 and 1350 K for V2O5 and Na2SO4 + V2O5 mixtures, 1200 and 1350 K for Na2SO4. For temperatures at 1350 K, the reaction mechanism of V2O5 and the mixture of Na2SO4 + V2O5 are similar and LaVO4 is formed as the corrosive product, which leads to massive phase transformation from pyrochlore to tetragonal and monoclinic phases. Microstructural observations from planar reaction zone (PRZ) and melt infiltrated reaction zone (MIRZ) reveals that the present La2Zr2O7 coating exhibits good hot corrosion resistance in V2O5 environment and moderate for the mixture of Na2SO4 + V2O5, but is worst in Na2SO4 environment.  相似文献   

5.
Manufacturing of enamels and frits has undergone dramatic changes since the 1980s. This has required significant efforts in research and development. Typical compositions of frits for ceramic tiles are silica-based with fluxing agents; some of the components are highly corrosive. Improvements in the production of frits would imply the selection of the most adequate refractories as a function of the chemical composition of the considered frit and the fabrication procedure.The refractories currently used in frit furnaces are Al2O3-ZrO2-SiO2 (AZS) fused cast materials and Cr2O3-based materials. In this work, results on dynamic corrosion studies of AZS and Cr2O3-based materials by two ZnO-containing frits are described. Experiments have been performed using the “Merry Go Round” test at ≅1500 °C. Macroscopic results are analysed in terms of the remaining volume after the tests, as usually done in the glass industry. The significance and limits of such an approach are discussed.  相似文献   

6.
In this work results on dynamic corrosion studies of fused cast Al2O3-SiO2-ZrO2 and isostatically pressed and sintered Cr2O3-based refractories by two crystalline (transparent) frits are described. Experiments have been performed using the “Merry Go Round” test at ≅1500 °C.Microstructural and mineralogical analyses of selected areas from the corroded regions of the studied refractories were performed by reflected light optical microscopy and scanning electron microscopy with analysis by X-ray dispersive energy.Significant differences between the corrosion mechanisms acting in the two types of materials were found. In the fused cast Al2O3-SiO2-ZrO2 specimens corrosion took place by the dissolution of alumina and zirconia in the frit and in the glass formed by the reaction between the frit and the refractory. In the Cr2O3-based materials the corrosion process was controlled by the capillar penetration of the molten frit through the open pores. The reaction between the ZnO from the frits and Cr2O3 led to the formation of spinel (ZnCr2O4), a high-melting point bonding phase that retarded the frit penetration. Results are discussed using the relevant phase equilibrium diagrams.  相似文献   

7.
In the present study, different types of 75% Cr3C2-25% NiCr coatings were applied on a steel substrate by means of high velocity oxygen fuel spraying (HVOF), and studied using ac and dc electrochemical measurements in an aerated and unstirred 0.5 M H2SO4 solution. Structural characterization was determined before and after electrochemical tests. Differences between all sprayed systems are related to the gun transverse speed and number of deposited layers, which strongly affected the electrochemical characteristics of the coated steels. The coating obtained with a higher torch speed showed better resistance against corrosion. The electrochemical impedance results were analyzed using an equivalent circuit where porosity of the coatings and substrate oxidation were considered.  相似文献   

8.
The glycothermal (GT) reaction of Ce acetate and Zr alkoxide directly yielded CeO2-ZrO2 solid solutions in a region of low Ce content ≤40 mol%. Of the CeO2-ZrO2 solid solutions obtained by the GT method and subsequent calcination at 500 or 800 °C, the sample with 20 mol% Ce content had the largest BET surface area. This sample exhibited the highest Ce-based oxygen release capacity in the whole Ce/Zr composition range. The oxygen release capacities of CeO2-ZrO2 solid solutions synthesized by the GT method were much larger than those of the samples prepared by a coprecipitation (CP) method. The Reitveld analysis and the repetitive reduction-oxidation experiment indicated that the CeO2-ZrO2 solid solution synthesized by the GT method has a homogeneous structure as compared with that prepared by the CP method.  相似文献   

9.
SiC/ZrC/C composites were prepared via pyrolysis of a polymeric precursor, namely AHPCS/Cp2ZrCl2 hybrid precursor prepared by the blend of allylhydridopolycarbosilane (AHPCS) and bis(cyclopentadienyl) zirconium dichloride (Cp2ZrCl2). The cross-linking and polymer-to-ceramic conversion of as-synthesized AHPCS/Cp2ZrCl2 were characterized by means of FTIR, 13C NMR, TGA, EDS, Raman spectroscopy and XRD. It is suggested that dehydrocoupling, hydrosilylation and dehydrochlorication are involved in the cross-linking of the hybrid precursor, which is responsible for a relatively high ceramic yield of 75.5% at 1200 °C. The polymer-to-ceramic conversion is complete at 900 °C, and it gives an amorphous ceramic. Further heating at 1350 °C induces partial crystallization, and then the characteristic peaks of β-SiC and cubic ZrC appear at 1600 °C. The effect of the composition of the hybrid precursor is also studied in the work.  相似文献   

10.
The surface of Cr2O3 nanoparticles was modified with various amounts of 3-amino propyl trimethoxy silane (APTMS). Thermal gravimetric analysis (TGA), turbidimeter and Fourier transform infrared (FTIR) spectroscopy were utilized in order to investigate APTMS grafting on the nanoparticles. Then, polyurethane nanocomposites were prepared using various loadings of silane modified Cr2O3 nanoparticles. The nanoparticles dispersion in the coating matrix was studied by a field emission scanning electron microscopy (FESEM). Dynamic mechanical thermal analysis (DMTA) and tensile test were utilized in order to investigate the mechanical properties of the nanocomposites. Results obtained from FTIR, TGA and turbidimeter measurements revealed that the organic functional groups of the silane were successfully grafted on the surface of the nanoparticles. The mechanical properties of the polyurethane were significantly enhanced using 2 wt% Cr2O3 nanoparticles modified with 0.43 g silane/5 g pigment compared with other samples.  相似文献   

11.
Cu metal matrix composite with Y2W3O12 as a thermal expansion compensator was fabricated by high energy ball milling followed by compaction and sintering, and its thermal properties were explored for the potential applications as heat sinks in electronic industries, high precision optics, and space structures. The volume fraction of reinforcement was varied from 40% to 70% in order to tailor the composite for the simultaneous accomplishment of low thermal expansion and high thermal conductivity. The synthesis technique was optimized by varying the parameters like milling time from 1 to 20 h and sintering temperature from 600 to 1000 °C in order to achieve densified composites. The relative density of the composites is found to be around 90% for the 10 h milled powders followed by compaction at a pressure of 700 MPa and sintering at a temperature of 1000 °C. The thermal expansion of the composites exhibits linear behavior in the temperature range 200 to 800 °C and the low coefficient of thermal expansion (CTE) is found to be for Cu–70%Y2W3O12 composite whose value, 4.32±0.75×10−6/°C, matches with that of Si substrate. The thermal conductivities are found to increase with a decrease in the volume fraction of the reinforcement and decrease with an increase in the temperature for all the samples. The experimentally determined CTE and thermal conductivity values are found to be comparable to those predicted by the thermal expansion based Kerner and Turner model and the thermal conductivity based Maxwell model, respectively.  相似文献   

12.
An enhanced electrochemical performance LiCoO2 cathode was synthesized by coating with various wt.% of La2O3 to the LiCoO2 particle surfaces by a polymeric method, followed by calcination at 923 K for 4 h in air. The surface-coated materials were characterized by XRD, TGA, SEM, TEM, BET and XPS/ESCA techniques. XRD patterns of La2O3-coated LiCoO2 revealed that the coating did not affect the crystal structure, α-NaFeO2, of the cathode material compared to pristine LiCoO2. TEM images showed a compact coating layer on the surface of the core material that had an average thickness of about ∼15 nm. XPS data illustrated that the presence of two different environmental O 1s ions corresponds to the surface-coated La2O3 and core material. The electrochemical performance of the coated materials by galvanostatic cycling studies suggest that 2.0 wt.% coated La2O3 on LiCoO2 improved cycle stability (284 cycles) by a factor of ∼7 times over the pristine LiCoO2 cathode material and also demonstrated excellent cell cycle stability when charged at high voltages (4.4, 4.5 and 4.6 V). Impedance spectroscopy demonstrated that the enhanced performance of the coated materials is attributed to slower impedance growth during the charge-discharge processes. The DSC curve revealed that the exothermic peak corresponding to the release of oxygen at ∼464 K was significantly smaller for the La2O3-coated cathode material and recognized its high thermal stability.  相似文献   

13.
《应用陶瓷进展》2013,112(8):505-508
Cr2AlC powders using Cr/Al/C and Cr/Al/Cr3C2 systems as raw materials were successfully synthesised by a microwave hybrid heating method for the first time. The mixtures of Cr, Al and graphite or Cr3C2 with different molar ratios were used to investigate the formation of Cr2AlC phase. For Cr/Al/C with the molar ratios of 2:(1.0–1.2):1 system, Cr2AlC with a small amount of Cr7C3 and Cr2Al was synthesised at 1000°C for 3 min, and the average particle size was ?1?μm. For Cr/Al/Cr3C2 with the molar ratio of 1:2:1 system, high purity Cr2AlC powders was synthesised at 1000°C for 3 min, and the average particle size was ?1?μm. The synthesis of high purity Cr2AlC powders for short time was attributed to the combination of the hybrid heating effect and the introduction of Cr3C2 as carbon source. Microwave hybrid heating is a promising method for the preparation of various other MAX phases.  相似文献   

14.
《Ceramics International》2016,42(5):5686-5692
This work reports on the fabrication and high temperature ablation property of a new ZrC/Cr2AlC composite. The ZrC/Cr2AlC composite was obtained by hot pressing a mixture of 15 vol% ZrC and 85 vol% Cr2AlC powders at 1300 °C with 20 MPa for 1 h in Ar atmosphere. The composite had a flexural strength of 622 MPa, higher than 400 MPa for Cr2AlC. The high temperature ablation behavior of the composite was investigated using the oxyacetylene torch ablation test. During oxyacetylene torch testing, the composite underwent a series of thermal decomposition and oxidation. Microstructure and composition of the synthesized composite before and after the ablation test were characterized with scanning electron microscopy and X-ray diffractometry techniques.  相似文献   

15.
Yb doped (Y0.97Zr0.03)2O3 transparent ceramics were fabricated by solid state reaction and vacuum sintering. The microstructure, thermal and mechanical properties of Y2O3 ceramic, as well as the effect of Yb doping concentration on these properties were investigated in detail. The lattice parameter and unit cell volume decrease with the increasing of Yb content, whereas thermal expansive coefficient increases. With Yb content increasing from 0 to 8 at.%, the mean grain size increases from 15.82 μm to 26.54 μm, and the thermal conductivity at room temperature (RT) decreases from 11.97 to 6.39 W/m/K. The microhardness decreases with Yb content, and the microhardness and fracture toughness of (Y0.97Zr0.03)2O3 transparent ceramic is 11.11 GPa and 1.29 MPa m1/2, respectively.  相似文献   

16.
17.
Jaephil Cho 《Electrochimica acta》2003,48(19):2807-2811
The thickness of an AlPO4 coating significantly affects the thermal stability of a LiCoO2 cathode. Increasing the coating thickness leads to not only a decrease in the exothermic reaction between the cathode and the electrolyte but also to an improvement in the cycling performance. A 1 C rate overcharge experiment up to 12 V is a good example of the thermal stability of the cathode in the Li-ion cell. Furthermore, increasing the AlPO4 coating thickness results in the lowest cell surface temperature, which is indicative of the degree of heat generation.  相似文献   

18.
热压烧结工艺制备Ti2AlC/Ti3AlC2陶瓷材料   总被引:1,自引:0,他引:1  
以Ti,Al,C为原料,采用热压工艺制备出相组成为Ti2AlC/Ti3AlC2块体材料,合成材料的X—射线衍射和扫描电镜(SEM)分析的结果表明:当烧结温度为1400℃时,材料中的主晶相为Ti2AlC,大小为10μm的板状多晶体;而在1500℃的温度下烧结所得材料的主晶相为Ti3AlC2,其板状多晶体的晶粒尺寸平均约为20μm。  相似文献   

19.
Yb2O3 (10 mol%) and Gd2O3 (20 mol%) doped SrZrO3 was investigated as a material for thermal barrier coating (TBC) applications. The thermal expansion coefficients (TECs) of sintered bulk Sr(Zr0.9Yb0.1)O2.95 and Sr(Zr0.8Gd0.2)O2.9 were recorded by a high-temperature dilatometer and revealed a positive influence on phase transformations of SrZrO3 by doping Yb2O3 or Gd2O3. The results for the thermal conductivities of Sr(Zr0.9Yb0.1)O2.95 and Sr(Zr0.8Gd0.2)O2.9 indicated that both dopants can reduce the thermal conductivity of SrZrO3. Mechanical properties (Young's modulus, hardness, and fracture toughness) of dense Sr(Zr0.9Yb0.1)O2.95 and Sr(Zr0.8Gd0.2)O2.9 showed lower Young's modulus, hardness and comparable fracture toughness with respect to YSZ. The cycling lifetimes of Sr(Zr0.9Yb0.1)O2.95/YSZ and Sr(Zr0.8Gd0.2)O2.9/YSZ double layer coatings (DLC), which were prepared by plasma spraying, were comparable to that of YSZ at operating temperatures <1300 °C. However, the cycling lifetime of Sr(Zr0.9Yb0.1)O2.95/YSZ DLC was 25% longer, whereas Sr(Zr0.8Gd0.2)O2.9/YSZ DLC had a shorter lifetime compared to the optimized YSZ coating at operating temperatures >1300 °C.  相似文献   

20.
Hot corrosion is one of the main destructive factors in thermal barrier coatings (TBCs) which come as a result of molten salt effect on the coating–gas interface. Hot corrosion behavior of three types of plasma sprayed TBCs was evaluated: usual CSZ, layer composite of CSZ/Micro Al2O3 and layer composite of CSZ/Nano Al2O3 in which Al2O3 was as a topcoat on CSZ layer. Hot corrosion studies of plasma sprayed thermal barrier coatings (TBCs) were conducted in 45 wt% Na2SO4+55 wt% V2O5 molten salt at 1050 °C for 40 h. The graded microstructure of the coatings was examined using scanning electron microscope (SEM) and X-ray diffractometer (XRD) before and after hot corrosion test. The results showed that no damage and hot corrosion products was found on the surface of CSZ/Nano Al2O3 coating and monoclinic ZrO2 fraction was lower in CSZ/Micro Al2O3 coating in comparison with usual CSZ. reaction of molten salts with stabilizers of zirconia (Y2O3 and CeO2) that accompanied by formation of monoclinic zirconia, irregular shape crystals of YVO4, CeVO4 and semi-cubic crystals of CeO2 as hot corrosion products, caused the degradation of CSZ coating in usual CSZ and CSZ/Micro Al2O3 coating.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号