共查询到18条相似文献,搜索用时 93 毫秒
1.
通过分子动力学模拟对石墨纳米片(GNP)/聚乙烯(PE)复合物的结构、力学和气体输运性质进行计算研究,分析其随模拟温度和GNP填充量的变化规律,探讨纳米界面形成、复合机制及结构与特性的关系。GNP/PE复合物呈现二维结构,GNP趋向于平面取向排列并通过范德华力和纳米石墨片层表面上的碳氢-π键使周围几个原子尺度内的PE分子固化为有序原子层,而PE基体仍然为各向同性的无定形结构。GNP/PE界面上纳米复合作用使体系能量降低,与PE体系相比,GNP/PE的杨氏模量和泊松比分别显著增高和降低。GNP平面取向导致GNP/PE的力学特性表现出二维各向异性的弹性常数张量,在石墨纳米片层平面方向上的杨氏模量明显增高,并且随温度的降低和GNP填充量的提高而增大,填充GNP有效改善了GNP/PE的力学性质。GNP/PE复合物的气体输运性质明显受到填充GNP的气体阻隔和取向的影响并且对3种气体渗透没有明显的选择性。GNP与基体的纳米复合导致N2、O2和CO2的分子输运呈现二维各向异性,随着石墨纳米颗粒填充量的增加,取向GNP层面方向的扩散系数比垂直方向高5~8倍,可用于气体分子屏障与渗流控制。 相似文献
2.
3.
4.
张潜汤赫男王妍 《高分子材料科学与工程》2023,39(7):90-102
基于分子动力学模拟研究方法,构建不同质量分数下碳纳米管(CNT)/聚醚醚酮(PEEK)/聚四氟乙烯(PTFE)复合材料分子体系。采用恒应变法计算复合材料的力学性能和摩擦学性能参数。将CNT官能化,官能团分别为氨基(—NH2)、酯基(—COOCH3)和羧基(—COOH),获得相应的力学性能和摩擦学性能参数,探析官能化CNT对PEEK/PTFE界面补强机理。模拟结果表明,加入CNT可以提高PEEK/PTFE基体的力学性能、降低磨损率,其中3%CNT/10%PEEK/PTFE复合材料的摩擦学性能表现最优。官能化CNT的加入在提高复合材料力学性能的同时,摩擦系数和磨损率均有所降低,其中,COOH-CNT/PEEK/PTFE复合材料摩擦学特性最优。文中制备了10%PEEK/PTFE,3%CNT/10%PEEK/PTFE和3%COOH-CNT/10%PEEK/PTFE复合材料,对3种复合材料进行了力学性能测试、摩擦磨损性能及扫描电镜磨损形貌分析。通过试验和分子动力学的双向表征,为PTFE基复合材料的研发和应用扩展提供理论依据。 相似文献
5.
本工作利用分子模拟软件Materials Studio建立了聚酰亚胺(PI)模型、不同直径的多壁碳纳米管模型(MWCNT)、不同长度的多壁碳纳米管模型(MWCNT)以及MWCNT/PI复合材料模型,探究了不同尺寸的MWCNT对MWCNT/PI复合材料模型的力学性能和玻璃化转变温度(Tg)的影响。计算结果表明,当加入长度为10~20μm、直径为10~20 nm的MWCNT,复合材料MWCNT/PI-1的杨氏模量和剪切模量分别为24.935 4 GPa和7.977 GPa;加入直径为10~20 nm、长度大于50μm的MWCNT后,复合材料MWCNT/PI-7的力学性能提高最为显著,杨氏模量和剪切模量分别为26.671 GPa和9.246 2 GPa。这表明MWCNT的直径越小或长度越长,即长径比增加,其与PI之间的相互作用力越强,从而可提高PI复合材料的力学性能,且MWCNT/PI的玻璃化转变温度升高。 相似文献
6.
7.
再生聚乙烯中挥发性气味物质的迁移是其用于食品包装的潜在风险之一。本研究使用分子动力学模拟的方法探讨了再生聚乙烯中甲苯、2,4-二甲基庚烷、α-蒎烯、柠檬烯、二苯醚和α-异甲基紫罗兰酮六种挥发性气味物质在不同温度下的扩散行为。通过气味物质分子的均方位移曲线计算了它们的扩散系数,并与实验值和Limm-Hollifield模型值进行了比较。从气味物质的拓扑结构参数、与聚乙烯的相互作用能、扩散活化能以及运行轨迹等方面分析它们的扩散行为。结果表明,这六种挥发性气味物质的扩散受多种因素综合影响。具有较大分子体积和回旋半径以及结构为球型的分子运动较为困难,因此有较小的扩散系数;当气味物质分子的溶解度参数与聚乙烯相近时,两者的相容性较好,分子也不容易扩散。从能量角度来说,气味物质与聚乙烯的相互作用能及其扩散活化能越大,分子运动所需的能量越大,扩散过程越缓慢。同一种物质在不同温度下的运动轨迹表现为长时间的振动与短时间的跳跃,但是在高温下的运动范围较大,轨迹点呈现明显的团簇。 相似文献
8.
在乙二醇(EG)与对苯二甲酸(PTA)酯化过程中加入经浓HNO3/浓H2SO4(1/3,体积比)氧化处理的多壁碳纳米管(MWCNTs),采用原位聚合法制备了不同MWCNTs含量(质量分数分别为0.2%、 0.6%和1.0%)的MWCNTs/PET纳米复合材料.扫描电子显微镜(SEM)观察发现当MWCNTs含量较低时,其在PET基体中分散良好;Instron 1122力学性能测试表明,经MWCNTs复合后,PET盯样品的拉伸强度与模量都有所提高;差示扫描量热(DSC)分析表明MWCNTs具有成核剂的作用,促进了PET熔体的结晶行为. 相似文献
9.
制备了一种单壁碳纳米管担载金纳米颗粒复合材料,利用X射线衍射、扫描透射显微镜、能量色散X射线分析、比表面积分析、激光拉曼光谱和紫外-可见分光光度计等对其结构进行了表征.结果表明:纳米金粒为微晶体,其平均直径为7nm且直径分布范围较窄.研究了该单壁碳纳米管担载金颗粒对仲醇的无溶剂氧化的活性和选择性,发现其转化效率可达95%. 相似文献
10.
11.
Zhenhua Yao Chang-Chun Zhu Min Cheng Junhua Liu 《Computational Materials Science》2001,22(3-4):180-184
The mechanical properties of single-walled carbon nanotube (SWCNT) are computed and simulated by using molecular dynamics (MD) in this paper. From the MD simulation for an armchair SWCNT whose diameter is 1.2 nm and length is 4.7 nm, we get that its Young modulus is 3.62 TPa, and tensile strength is 9.6 GPa. It is shown that the Young modulus and tensile strength of armchair SWCNTs are 12 order higher than those of ordinary metal materials. Therefore we can draw a conclusion that carbon nanotubes (CNT) belong to a particular material with excellent mechanical properties. 相似文献
12.
Understanding the diffusion of migrants in polyethylene terephthalate (PET) and calculating the diffusion coefficients are very important for migration research. In this study, the diffusion coefficients of 13 kinds of small molecules with molecular weights ranging from 32 to 339 g/mol in amorphous PET are calculated based on molecular dynamics (MD) simulation. By comparison of diffusion coefficients simulated by MD simulation techniques, predicted by the Piringer model and by experiments, the accuracy of the Piringer model and MD simulation techniques for the estimation of diffusion coefficients of migrants in PET is evaluated. The MD simulation shows that Dsimu is very close to Dexp, within one order of magnitude of the experimental diffusion coefficients except for a few samples. The possible reasons for the differences among Dsimu, Dpred and Dexp are analysed from the molecular weight and temperature. The results show that the Piringer‐model‐predicted values at high temperatures overestimate significantly higher than that at lower temperatures. The activation energy is calculated by the Arrhenius equation, which shows the relationship between diffusion coefficient and temperature. It is shown that the MD simulation yields acceptable activation energy. The study suggests that MD simulation may be a useful approach to calculate the diffusion coefficients of small molecules in PET. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
13.
在COMPASS(Condensed-phase optimized molecular potentials for atomistic simulation studies)力场下, 对以氨(Amine)、 丁二胺(Butanediamine)为核的1代~3代(1G~3G)石墨/树状大分子纳米复合材料进行了分子动力学模拟(Molecular dynamics simulation)。介绍了复合体系的构建过程及分子动力学模拟细节, 从微观构形、 能量变化研究了正则系综(恒定的NVT)中6种插层复合物的稳定性及其机理, 最后利用径向分布函数(Radial distribution function)对能量变化结果进行了分析。结果表明, 当树状大分子体积较小时, 石墨层容易弯曲, 体系能量较高, 导致复合体系不稳定; 随着树状大分子代数的增加, 石墨层形变减小, 体系能量降低, 3代时树状大分子体系最稳定。 相似文献
14.
This paper is aimed to develop a modified force field for molecular dynamics (MD) simulations of polarizable carbon nanotubes (CNTs). The effects of electrical polarization and the associated electronic degrees of freedom are represented by a network of negative charged shell particles which move relative to the surrounding positively charged carbon atoms in response to an applied electric field. In this setting, the negative and positive charges are exactly balanced so that the total system remains electrically neutral, and the motion of the shell particles relative to their equilibrium positions leads to polarization within the nanotube. Potential applications of the proposed model include simulations of controlled translocation of ions, water and polymers through solid-state CNT membranes. 相似文献
15.
Load transfer of the graphene/carbon nanotube (CNT)/polyethylene hybrid nanocomposite is studied here from molecular dynamics (MD) simulations. Simulations of this composite material under uniaxial tension were conducted by varying CNT’s position and diameter in the polymer matrix. The obtained results show that: (1) The peak strength of stress and strain evolution in the polymer matrix is lower than the peak strength of the graphene/graphene and graphene/polymer interfaces. Hence, the damage zone is always located in the polymer matrix. (2) Agglomerated two-layer graphenes do not possess an increased value in the peak strength compared with single-layer graphene-reinforced polymer nanocomposite (PNC), while two separate layers of graphene show slightly higher peak strength. (3) The largest peak strength is observed before CNT moves to the center of the polymer matrix. The damage location moves from the upper to the lower part of CNT when the CNT is located at the centre of polymer matrix. (4) The influence of the CNT diameter on the peak strength is not obvious, while the damage location and shape in the polymer matrix changes with respect to varying CNT diameters. In addition, the damage zone always falls outside the interphase zone. 相似文献
16.
通过微型双螺杆挤出机熔融共混制备了聚对苯二甲酸乙二醇酯(PET)/碳纳米管(CNT)复合材料。采用表面电阻仪、场发射扫描电镜(FESEM)和差示扫描量热仪(DSC)研究了多壁碳纳米管(MWNT)和羧基化多壁碳纳米管(MWNT-COOH)对复合材料导电性能与结晶性能的影响。结果表明,当CNT含量1%(质量分数)时,CNT在PET中形成三维导电网络,复合材料具有抗静电和导电功能,MWNT-COOH分散性好,与PET有较强的界面结合和相互作用,复合材料的导电性优于PET/MWNT。复合材料的结晶放热峰温度大幅提高,比PET高40多℃,0.1%(质量分数)含量的CNT就有非常明显的异相成核与诱导结晶作用。同时,复合材料的结晶度增加,熔点略微升高。 相似文献
17.
Carbon nanotubes (CNTs) as superior support materials for functional nanoparticles (NPs) have been widely demonstrated. Nevertheless, the homogeneous loading of these NPs is still frustrated due to the inert surface of CNTs. In this work, a facile gas-phase pyrolysis strategy that the mixture of ferrocene and CNTs are confined in an isolated reactor with rising temperature is developed to fabricate a carbon-coated Fe3O4 nanoparticle/carbon nanotube (Fe3O4@C/CNT) composite. It is found the ultra-small Fe3O4 NPs (<10 nm) enclosed in a thin carbon layer are uniformly anchored on the surface of CNTs. These structural benefits result in the excellent lithium-ion storage performances of the Fe3O4@C/CNT composite. It delivers a stable reversible capacity of 861 mA·h·g−1 at the current density of 100 mA·g−1 after 100 cycles. The capacity retention reaches as high as 54.5% even at 6000 mA·g−1. The kinetic analysis indicates that the featured structural modification improves the surface condition of the CNT matrix, and contributes to greatly decreased interface impendence and faster charge transfer. In addition, the post-morphology observation of the tested sample further confirms the robustness of the Fe3O4@C/CNT configuration. 相似文献