首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 156 毫秒
1.
李根  吴锦武 《声学技术》2017,36(4):371-377
以层合板结构的临界屈曲载荷系数最大化为优化目标,基于改进型模拟退火算法对层合板结构铺设角度和铺层顺序进行优化。由于层合板结构的铺层角度是离散变量,模拟退火算法适合求解离散变量的优化问题。利用模拟退火算法优化层合板铺层,在算法内采用并行计算、引入记忆功能同时设置双阈值终止准则,有效地提高了优化过程的收敛速度,同时避免优化过程中出现局部最优解。以临界屈曲载荷系数作为目标函数,选取复合材料层合板的铺设角度顺序为设计变量,采用改进的模拟退火算法得出复合材料层合板的最优铺设角度以及铺层顺序。  相似文献   

2.
开展了大展弦比复合材料机翼气动弹性综合优化设计研究,以复合材料层合板铺层厚度为设计变量,以多种气动弹性约束与强度/应变约束为限制条件对结构进行优化设计,从铺层比例和铺层非均衡两方面分析了蒙皮铺层参数的影响。研究表明: 在满足综合约束的条件下,随着0°铺层比例的增加,翼尖变形略微减小,颤振速度略有下降,副翼效率变化不大; 蒙皮铺层非均衡程度主要影响机翼静气动弹性能,随着蒙皮非均衡引起的机翼刚轴绕翼根向前缘逐渐偏转,翼尖垂直变形变化不明显,但翼尖负扭转变形的绝对值加大,副翼效率下降。  相似文献   

3.
基于铺层设计特征,提出一种使用碳纤维复合材料对承载结构件进行结构优化设计的方法和流程.该方法综合考虑结构几何特征、材料铺层方式、铺层厚度及铺层角度在设计环节中的序列关系,通过几何设计空间构建、离散变量多目标优化、基于工艺可行性的最优决策等方法实现结构设计.以碳纤维增强复合材料悬架控制臂的轻量化设计为例:首先,以钢质控制臂结构为参考建立复合材料控制臂的几何设计空间;然后,以复合材料铺层便利性为原则对其进行结构设计,采用准各向同性铺层对控制臂的铺层厚度进行设计;进而,以提高控制臂刚度和1阶固有频率为目标,使用优化算法对铺层角度进行多目标优化设计;最后,以工艺可行性为约束对优化结果进行筛选并最终完成结构设计.结果表明,所设计复合材料结构具有更大的刚度和1阶固有频率,并且与钢质结构相比减重47.9%.所提出的方法能够较好地兼顾结构特征和复合材料设计要求之间的关系,为复合材料结构优化设计理论与方法的发展提供有益参考.  相似文献   

4.
基于改进模拟退火算法的复合材料层合板频率优化   总被引:1,自引:0,他引:1       下载免费PDF全文
针对复合材料层合板频率优化问题,结合可行规则法和直接搜索模拟退化算法,提出了一种自适应模拟退火(SA)改进算法。层合板优化目标是基频、频率带隙以及给定基频和带隙约束的层合板厚度。设计变量包括铺层角度和铺层数两种离散变量。改进算法的自适应新点产生模块采用依赖温度的动态调整搜索半径,改善了直接搜索模拟退化(DSA)算法易陷入局部极值的缺陷,而可行规则法的引入提高了SA算法求解约束问题的效率和简易性。采用Ritz法进行频率响应分析以考虑弯扭耦合影响。不同铺层数、角度增量和长宽比时的层合板3类算例结果显示:改进算法能有效求解层合板频率优化,可获得更多或更好的铺层顺序全局优化解。  相似文献   

5.
基于梯度的优化方法对复合材料层合板进行了变刚度铺层优化设计。在优化过程中需确定铺层中各单元的密度以及角度。为了使优化结果具有可制造性,优化结果需满足制造工艺约束并且铺层角度需从预定角度中选取。为了避免在优化问题中引入过多的约束并减少设计变量的数目,提出密度分布曲线法(DDCM)对层合板中各单元的密度进行参数化。根据各单元的密度以及角度设计变量并基于Bi-value Coding Parameterization(BCP)方法中的插值公式确定各单元的弹性矩阵。优化过程中以结构柔顺度作为优化目标,结构体积作为约束,优化算法采用凸规划对偶算法。对碳纤维复合材料的算例结果表明:采用DDCM可得到较理想的优化结果,并且收敛速率较快。  相似文献   

6.
大展弦比复合材料机翼气动弹性优化   总被引:7,自引:3,他引:4       下载免费PDF全文
使用遗传/ 敏度混合优化算法对大展弦比复合材料机翼进行气动弹性优化设计研究。在满足强度、位移、发散速度和颤振速度等约束条件的前提下, 以机翼各部件复合材料铺层的厚度为设计变量, 对结构进行重量最小化设计。研究表明: 弯曲变形严重影响最终的优化重量, 是设计大展弦比复合材料机翼结构时应该重点考虑的问题; 按照应力设计准则对这类结构进行设计, 往往很难满足弯曲变形的要求; 使用遗传/ 敏度混合优化算法对大展弦比复合材料机翼进行气动弹性优化设计能够在可以接受的计算耗费下获得满意的结果。   相似文献   

7.
针对应力变化较大的碳纤维增强复合材料层合板,提出削层结构铺层分级优化模式。通过将结构分解为若干子铺层并对各子铺层的位置、尺寸、铺层数以及铺层顺序进行优化,得到了满足强度和可制造性要求且质量最小的结构设计方案。该模式的第1、2级优化利用参考层对各子铺层位置及尺寸进行优化,第3级优化通过引入3次样条插值参数化方法对各子铺层层数和铺层顺序进行优化。参考层的引入可减少设计变量的数量,3次样条插值参数化方法可解决以铺层角为设计变量时设计变量数目不确定的问题。利用有限元方法对结构进行力学分析计算,并依据Tsai-Wu准则确定结构强度。在第2、3级优化中利用遗传算法对优化问题进行求解。算例计算表明:削层结构铺层分级优化模式结果合理可信。与均匀铺层方法结果比较可知:削层结构可有效减少结构质量。  相似文献   

8.
史永胜  孙文泽 《包装工程》2023,44(1):300-308
目的 对无伞空投箱所用的碳纤维、玻璃纤维、芳纶纤维/环氧树脂体系纤维混杂铺层的复合材料层合板进行研究,以在低成本下提高实现效果。方法 复合材料层合板分为10层,采用层间混杂结构,通过改变混杂比、铺层角度及铺层顺序,设计148种铺层方案,利用ANSYS–APDL软件分析3种参数变量对层合板拉伸性能及抗弯性能的影响。结果 沿主要受力方向铺设纤维,碳纤维层在外侧、玻璃纤维层集中在中心,且玻璃纤维层体积分数为40%时,材料具有最高的性价比。结论 针对混杂纤维复合材料层合板,通过调整混杂比得出碳/玻璃混杂纤维复合材料性能较好,通过调整铺层角度得出纤维铺设角度越接近受力方向其性能效果越好,通过调整铺层顺序得出不同混杂比、铺层角度下的最佳性能结构。  相似文献   

9.
本文对复合材料航空翼面结构进行了满足位移及工艺尺寸要求的最小重量设计,用多项式模拟复合材料蒙皮各个铺层的厚度采用有限元法做结构分析,用可行方向法求解优化问题.设计变量取为多项式的系数及其他有限单元的厚度或截面积,通过变量成组减小问题的规模.文中对一个复合材料盒段,一个复合材料机翼进行了优化设计,得到了较好的结果.   相似文献   

10.
根据复合材料工字型加筋壁板的工艺铺设特点,建立了一种特殊的有限元模型,将工字型筋条按照凸缘顶板、[形腹板、凸缘底板、以及蒙皮四个层合板进行建模。针对工字型加筋壁板的铺层特征,本研究采用二级优化策略对工字型加筋壁板进行以静强度、刚度和稳定性为约束条件的轻量化设计,与一级优化(铺层厚度和弯曲刚度系数的调整)相比,二级优化采用改进的自适应遗传算法优化层合板的铺层顺序,优化设计结果可以直接用于工程应用,有限元模型和优化方法对复合材料工字型加筋壁板的设计具有指导意义。  相似文献   

11.
首先实现了基于几何因子的复合材料层合板建模方法,解决了几何因子与Natran的参数输入问题,并通过一个简单算例进行验证。其次,在基于几何因子的层合板建模方法的基础上,采用p-k法计算颤振速度和发散速度,进行基于几何因子的悬臂复合材料层合板颤振和发散特性分析研究,重点研究了主轴刚度和弯扭耦合效应对颤振速度的影响。分析结果表明:相对于弯曲刚度,扭转刚度的改变对颤振速度的影响更显著,且扭转刚度越小,颤振速度越低;颤振模式随着刚度特性的改变有可能发生转变,导致颤振速度的突然变化和几何因子空间内颤振速度等高线的不连续;在正则化刚度矩阵不变的情况下,层合板厚度增加会同时提高颤振速度和发散速度,且颤振速度与发散速度与厚度大致呈线性关系。  相似文献   

12.
The purpose of this paper is to propose an effective solution scheme of simultaneous optimization design of layup configuration and fiber distribution for maximum stiffness design of laminated plates. Firstly, a numerical analysis of the lamination parameters feasible region for a laminated plate consisting of various given number of ply groups (each ply group may have different thickness and all the fibers in one ply group are orientated in an identical direction) is carried out, and it is found that the feasible region based on only a few ply groups is very close to the overall one determined by infinite plies. Therefore, it is suggested that the feasible region of lamination parameters of a laminated plate could be approximately determined by the layup configuration of least ply groups. Secondly, a two-step simultaneous optimization scheme of layup configuration and fiber distribution for maximum stiffness design of laminated plates is proposed. Accordingly, by using ply thickness, fiber orientation angle and fiber volume fraction in a laminated plate of least ply groups as design variables, the optimal lamination parameters for maximum stiffness is obtained. Then, taking the optimal lamination parameters as the design objective, a detailed layup design optimization is implemented by considering some limitations on manufacturing, such as preset ply thickness, and specific fiber orientation angle and a limited maximum number of consecutive plies in the same fiber orientation. Numerical examples are also presented to validate the proposed two-step optimization scheme.  相似文献   

13.
The buckling characteristics and layup optimization of long laminated composite cylindrical shells subjected to combined loads of axial compression and torsion are examined on the basis of Flügge’s theory. In the buckling analysis of long laminated composite cylindrical shells, 12 lamination parameters are introduced and used as design variables for layup optimization. Applying a variational approach, the feasible region in the design space of the 12 lamination parameters is numerically obtained. The buckling characteristics are discussed in the design space of the 12 lamination parameters. In the layup optimization, the optimum lamination parameters for maximizing the buckling loads and the laminate configurations for realizing the optimum lamination parameters are determined by mathematical programming methods. It is found that in case of combined loads of axial compression and torsion, the optimum laminate configurations are unsymmetric.  相似文献   

14.
This paper will demonstrate the application of fracture mechanics and optimization techniques for the optimum design of fibre-reinforced composite laminates (FRC). First, a boundary-value problem of a cracked composite laminate is solved within the framework of linear elastic fracture mechanics (LEFM). The solution relates the stress intensity factor at a crack tip and the crack-induced interfacial stresses to the laminate configuration. These results are then used in two types of the optimum design of fibre-reinforced composite laminates. In the first type of optimum design, namely a crack-insensitive design of the laminate, the crack driving force and interfacial principal tensile stress are both minimized by using single- and multicriterion optimization techniques. The second type of optimum design involves in situ strength design of multidirectional angle-ply laminates. In this case, a set of in situ strength parameters are proposed based on theoretical analysis and experimental observations. This optimization problem is a min {max} one and non-differentiable. A proper treatment of the non-differentiability is introduced and the min {max} optimization problem is converted into a differentiable single-criterion one using the bound-formulation technique. All the optimization problems are solved by non-linear mathematical programming. The results show that optimization can greatly enhance the load carrying capacity of the laminates.  相似文献   

15.
《Composites Part B》2007,38(4):469-480
In this paper we formulate the problem of wing box design optimization using composite laminates with blending constraints. The use of composite laminates necessitates the inclusion of fiber orientation angle of the layers as well as total thickness of the laminate as design variables in the design optimization problem. The wing box design problem is decomposed into several independent local panel design problems. In general such an approach results in a nonblended solution with no continuity of laminate lay ups across the panels, which may not only increase the lay up cost but may also be structurally unsafe due to discontinuities. The need for a blended solution increases the complexity of the problem many fold. In this paper we impose the blending constraints globally by using a guide based design methodology within the genetic algorithm optimization scheme and compare the results with the published ones. Two different blending schemes – outer and inner blending are presented. The result shows that the optimum design obtained using the current methodology has better continuity of laminate lay ups and also the reported weight of the composite wing box is on the lower side. Finally, a parametric study of the effect of global deflection constraint on the total weight of the optimum design is presented.  相似文献   

16.
A design strategy for optimal design of composite grid-stiffened cylinders subjected to global and local buckling constraints and strength constraints was developed using a discrete optimizer based on a genetic algorithm. An improved smeared stiffener theory was used for the global analysis. Local buckling of skin segments were assessed using a Rayleigh-Ritz method that accounts for material anisotropy. The local buckling of stiffener segments were also assessed. Constraints on the axial membrane strain in the skin and stiffener segments were imposed to include strength criteria in the grid-stiffened cylinder design. Design variables used in this study were the axial and transverse stiffener spacings, stiffener height and thickness, skin laminate stacking sequence and stiffening configuration, where stiffening configuration is a design variable that indicates the combination of axial, transverse and diagonal stiffener in the grid-stiffened cylinder. The design optimization process was adapted to identify the best suited stiffening configurations and stiffener spacings for grid-stiffened composite cylinder with the length and radius of the cylinder, the design in-plane loads and material properties as inputs. The effect of having axial membrane strain constraints in the skin and stiffener segments in the optimization process is also studied for selected stiffening configurations.  相似文献   

17.
This paper deals with the damping characteristics of symmetrically laminated plates with transverse shear deformation. First, the effect of laminate configuration on the damping characteristics is investigated for cantilevered laminated plates based on the Reissner–Mindlin’s first-order shear deformation theory. To examine the effect of laminate configuration, the concept of specific damping capacity is introduced and the damping characteristics are represented on the lamination parameter plane, where the damped stiffness invariants in transverse shear are newly proposed in this paper. Next, the optimal laminate configurations for the cantilevered laminated plates with maximal damping are determined taking into account the transverse shear effect by using differential evolution in which lamination parameters are used as intermediate design variables. The relation between the laminate configurations and the damping characteristics is discussed based on the concept of lamination parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号