首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
文中将空间矢量脉宽调制算法(SVPWM)应用于光伏并网逆变器,降低谐波畸变率,并利用MATLAB/SIMULINK工具箱搭建光伏逆变器并网仿真模型,实现了输出电流与电网电压同频同相,验证了算法的正确性,并网电流波形良好,所设计的逆变系统能够安全稳定可靠运行。  相似文献   

2.
针对光伏发电系统暂态稳定性差的问题,在PSCAD/EMTDC环境中建立了光伏发电系统的电磁暂态仿真模型,并基于该模型分析了三相短路故障和光照强度跃变等条件下光伏发电系统的暂态响应特性.研究光伏发电系统的物理模型,并建立由光伏阵列、最大功率跟踪模块、升压电路和三相并网逆变器等组成的光伏发电系统动态仿真模型.仿真对比分析了不同运行条件下的光伏逆变器输出有功功率、电压以及电流的暂态特性,结果表明逆变器输出功率和电流会随着光照强度变化而平滑地改变,短路故障则会引起电压跌落和瞬态过电流.  相似文献   

3.
应用MATLAB对机车主变压器与变流装置系统的谐波特性进行仿真分析,详细讨论整流逆变滤波电路参数、PWM控制的调制比和载波比等对变压器二次侧电流及逆变输出电压谐波含量的影响,分析结果表明:当整流回路的滤波电容达到一定数值后改变电感,变压器二次侧电流的主要次谐波含量变化不明显;当逆变输出控制的PWM调制比适当时,输出电压的谐波含量随载波比的变化较为平缓。  相似文献   

4.
针对小型无人机发动机相互分离的起动系统和发电系统存在起动机操作复杂和整流电路谐波分量多的问题,提出了一种无人机发动机起动/发电一体化方案.首先分析了整流/逆变双向PWM变换器控制系统,然后设计了其电压外环和电流内环PI调节器参数,最后进行了仿真验证.仿真结果表明,整流/逆变双向PWM变换器整流变换能够输出稳定的直流电压,并实现单位功率因数整流,逆变变换能够输出所需的三相交流电,从而验证了方案的可行性.  相似文献   

5.
研究电网不对称故障下光伏逆变器的瞬时输出功率特性,结合指令电流的总谐波畸变率的解析推导,提出光伏发电的功率控制算法。考虑光伏逆变器输出电流谐波畸变率限值约束,以有功和无功功率波动的综合幅值最小为目标,建立光伏发电功率控制参数的优化模型。基于无差拍电流跟踪建立光伏发电系统整体模型,利用PSCAD/EMTDC仿真平台验证了该控制策略的可行性。  相似文献   

6.
为便于分布式光伏发电以微网形式接入到本地配电网中,根据空间矢量脉宽调制(SVPWM)和PQ控制算法的基本原理,设计了一套基于DSP处理器的并网型光伏逆变器,通过软硬件的结合,在DSP平台上进行调试和试验验证。利用TMS320F28335实现SVPWM波形具有控制算法简单、实现方便、速度快、控制准确等优点,光伏逆变器能稳定输出相电压有效值为(220±6.6)V、电压频率为(50±0.5)Hz的交流电,输出电压谐波含量较小,在光伏并网发电领域具有较好的应用前景。  相似文献   

7.
根据分布式光伏发电特性,通过对中压配电网中无功优化的分析,找到潮流、电压波动和无功容量与光伏发电无功功率间的定量关系。利用粒子群优化(PSO)算法,基于逆变器的分布式光伏发电中压配电网的无功优化,明确了控制无功功率以支持配电网和电压调节的方法。实例仿真结果说明,该方法能够有效减少光伏发电系统中压配电网的电压升高和逆潮流问题。  相似文献   

8.
随着配电网中接入光伏发电比例的不断增加,大规模分布式光伏发电接入后带来的配电网电压控制问题引起了人们的广泛关注。在分析分布式光伏发电接入点电压特性的基础上,提出一种能够防止馈线电压越限的控制方案。在配电网电压将要越限时,光伏逆变器实时设定分布式光伏注入配电网功率的限值,防止电网电压越限。通过仿真分析验证了所提出的方案能够有效的对含大规模分布式光伏发电的配电网电压进行辅助管理,有效提高配电网中光伏发电的渗透率。  相似文献   

9.
针对传统的正弦脉冲宽度调制(Sinusoidal Pulse Width Modulation,SPWM)电流跟踪并网逆变控制方法的电流响应较慢,跟随误差较大,易受电网电压影响的问题,提出了一种改进的SPWM电流瞬时值跟踪控制方法.介绍了单相并网逆变主电路拓扑结构,对改进型SPWM电流控制方式进行了描述和分析,建立了并网电流闭环控制系统的数学模型.系统中运用了闭环控制模式,加入了电压前馈补偿环节,通过控制逆变系统的输出电流以跟踪市电的变化,与电网电压同频、同相.仿真结果表明,改进后的方法输出电流波形谐波畸变含量为0.26%,加入PI控制环节的调整时间为0.2 s.  相似文献   

10.
为了准确分析分布式光伏并网对电压稳定的影响,针对光伏阵列,给出了一种基于实时数字仿真仪(RealTime Digital Simulator,RTDS)软件平台的光伏并网建模方法.介绍了光伏发电的原理,对分布式光伏并网系统接入电网的方法进行了详细分析和研究.然后,基于光照强度和环境温度在RTDS软件平台上搭建了一个光伏发电并网模型,对光伏并网系统进行了仿真研究.仿真结果表明,不同的系统故障状态下,光伏并网对公网侧和并网侧电压稳定性的影响不同.  相似文献   

11.
针对级联型逆变器结构的分布式电源的应用,提出了一种基于阶梯波的交流母线分布式电源电路.通过将具有不同相移的逆变单元输出的方波叠加,得到阶梯波交流母线电压输出.文章讨论了级联多电平逆变器的几种典型的阶梯波调制方法,提出了一种改进的等宽方波调制法.采用该调制方法的三单元逆变器母线电压的谐波含量降到了基波电压幅值的9.8%.使用该调制法的具体电路结构,最后通过了仿真实验验证.  相似文献   

12.
SPWM逆变电源输出谐波分析及抑制方法研究   总被引:1,自引:0,他引:1  
在SPWM逆变电源输出电压中含有丰富的高频谐波成分,高频谐波在用电设备中引起严重的电磁干扰问题,降低了系统运行的可靠性。通过对SPWM逆变电源的输出谐波分析,提出了一种采用随机调制进行谐波抑制的方法。该方法能使逆变电源的输出电压频谱连续分布而不影响基波分量,使逆变电源的输出谐波能量分布更加均匀,从而降低输出谐波的峰值幅度,减小设备所产生的电磁干扰。通过Simulink软件仿真和实验测试,表明采用随机调制后SPWM逆变电源输出谐波峰值幅度降低了约10 dB。  相似文献   

13.
为提高六相电压源逆变器的稳定性,最大限度地降低系统功率损耗,通过分析六相电压源逆变器相邻四矢量控制策略,并结合其本身所具有的开关特性,合理利用不同类型的零电压矢量,并调整其在一个开关周期中的作用时间,以达到改善功率器件开关模式的目的,从而优化了六相电压源逆变器空间矢量脉宽调制(SVPWM)策略.仿真结果表明,传统的电压矢量调制方式相比,该方法在不同调制深度下具有理想的谐波特性,同时可以有效地降低逆变器开关损耗.  相似文献   

14.
三电平逆变器拓扑结构简单、所用器件较少且每个功率管所承受的电压应力小,适用于高电压、大容量的场合.相比于传统两电平逆变器,三电平逆变器输出电平的数量从2变成3,输出的电压电流谐波含量低,波形正弦度更好.本文提出内置式永磁同步电机模型预测电流控制算法,以提高控制系统电流动态响应速度,并针对该算法在控制系统中产生的时间延迟...  相似文献   

15.
基于DSP单相SPWM逆变电源调制方式研究及实现   总被引:2,自引:0,他引:2  
对单相全桥电压型SPWM逆变电源的3种调制方式进行了分析研究,并对3种调制方式下逆变器输出SPWM电压波形进行谐波分析,介绍了利用数字信号处理器TMS320F240实现其中一种性能优越的调制方式用于SPWM逆变电源,其输出电压谐波小,对称性好.  相似文献   

16.
太阳能光伏发电、蓄电池等逆变型分布式电源的主电路结构与电力有源滤波器类似,可以通过逆变器的控制在输出基波功率的同时对配电网的谐波进行管理,能够节省专门的电能质量管理设备投资,具有广阔的应用前景。研究基于逆变型分布式电源的电能质量管理方法的同时,提出了一种能够充分利用分布式电源能力,灵活选择谐波补偿水平,并从整体上提高配电网电能质量的管理方法。仿真结果证明了方法的有效性。  相似文献   

17.
针对大功率变频器与工频电源切换不当引起电机产生冲击电流和转速波动的问题,提出了一种预测控制的交流电机变频/工频同步转换控制方案.采用TMS320F2812 DSP芯片对变频器输出电压和工频电压信号进行同步采样,通过鉴相运算得到两路输入信号的相差信号,然后调用预测控制算法程序实现锁相控制.当变频器输出电压与工频电网电压相位达到一致时,DSP控制继电器动作,从而实现电机由变频电路到工频电网平稳、无扰切换.仿真结果表明,该设计方案具有快速性、优良的跟踪特性和很强的鲁棒性.  相似文献   

18.
针对传统多电平逆变电路结构和控制原理复杂,实现成本高,且不适应于中小功率逆变场合运用的缺点,设计了一种适用于中小功率场合的多电平逆变。通过组合变流技术合理地控制PWM,获得多电平逆变所需的电压波形。介绍了该多电平逆变的原理和设计方法,给出了系统的电路结构,并通过Multisim11.0对设计进行了仿真。仿真结果表明,能通过控制给定电压的方法实现多电平逆变,输出电压波形能较好地跟随给定,控制方法简单。  相似文献   

19.
本文论述20KHZPWM(脉冲宽度调制)型大功率超声波发生器的原理和电路组成。PWM信号是由性能优越的TL494集成电路产生,高频逆变器采用国际先进的磁性材料和IGBT功率器件构成。逆变器将输出的高频电压送入超声波换能器,从而辐射出超声波。该系统具有电路简单,工作可靠,体积小,成本低,输出功率调节方便,效率高,实用性强等特点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号