首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 93 毫秒
1.
为了解决应用于电动汽车与电网进行双向互动的双向DC/DC变换器的设计问题,对该变换器的应用环境特点、负载特性、双向有源桥和谐振式CLLC的特性等进行了研究。通过对实际应用场景和负载特点的分析,归纳出了应用在此类环境下的双向DC/DC变换器应该选择能够在较宽增益变化范围内实现软开关的拓扑;通过结合实际应用场景,对比了双向有源桥和谐振式CLLC拓扑,选择了谐振式CLLC作为该变换器的基本拓扑;给出了基于谐振式CLLC拓扑的双向DC/DC变换器的设计流程及关键参数的计算公式;基于谐振式CLLC拓扑和流程设计了一台3 k W的双向DC/DC变换器。研究结果表明:以Si MOSFET为开关器件,当开关频率在100 k Hz以上时,变换器的正反向效率可以达到96.6%。  相似文献   

2.
王宝瑛  曹秉刚  白志峰 《机械》2005,32(6):53-55,62
以提高电动汽车控制性能为目标,主要针对电动汽车控制系统的双向DC/DC变换器和电机驱动器的基本组成电路——降压斩波电路和升压斩波电路进行研究,搭建了系统软硬件平台,设计了模糊自整定PI控制器,通过实验验证了该控制器的良好控制效果。  相似文献   

3.
李骥  李军 《仪表技术》2009,(9):68-69,78
介绍一种采用DSP芯片TMS320LF2812实现双向DC/DC变换器控制系统的设计,给出了控制系统的整体设计结构框图,硬件设计及软件设计流程.  相似文献   

4.
太阳能、风能、潮汐能等分布式能源研究与应用日益广泛,采取了一种含储能系统的分布式发电系统模型,利用超级电容构成的储能系统减少分布式能源由于间歇性、不持续性、易波动性给电网带来的冲击。超级电容经双向DC/DC变换器向直流母线供电,针对传统变换器电流纹波较大、开关器件电压应力高的问题,研究了一种新型双向DC/DC变换器,分析了其工作原理,结合一种移相控制策略,能增强系统运行稳定性,减少了能量损耗,提高系统转换效率。  相似文献   

5.
针对电动汽车用直流/直流(DC/DC)变换器控制系统的EMI进行测试和分析,得到DC/DC变换器控制系统的EMI特征,为设计有效的EMI抑制措施提供依据,同时为电动汽车零部件电磁兼容标准的制定奠定基础。  相似文献   

6.
谢文涛  张东  吕征宇 《机电工程》2007,24(9):101-104
按照光伏发电系统的要求确定了该系统中DC/DC变换器的拓扑--Boost电路,给出了该拓扑的工作原理和小信号模型.在此基础上,详细介绍了Boost的电路参数,驱动和保护电路以及控制回路的设计.最后给出了1 kW光伏发电系统中前端DC/DC变换器的实验波形,验证了设计的正确性.  相似文献   

7.
随着多个直流电源模块并联供电的广泛应用,对并联供电各模块的性能要求越来越高,尤其强调负载变化时的非等分均流.构建了使用LM2596设计的两个额定功率16W,输出电压为8V的DC/DC变换器并联供电模型,采用单片机控制两个DC/DC变换器的电流按比例分配.实验结果表明,构建的并联供电模型,可以按照不同比例分配电流,满足设计要求.  相似文献   

8.
主要针对电动汽车用直流/直流(DC/DC)变换器主电路的EMI进行测试和分析,得到DC/DC变换器主电路的EMI特征,为设计有效的EMI抑制措施及制订电动汽车零部件电磁兼容标准奠定基础。  相似文献   

9.
基于对蓄电池维护的需要,采用由2个Bi Buck-Boost电路拓扑组合的方法,设计了一种宽电压范围输出的双向DC/DC变换器,研制了一台10kW的样机.实验结果表明,该样机可以实现对单节蓄电池或多节蓄电池组进行充放电,在额定功率范围内,输出电压、电流稳定,纹波小,响应速度快,验证了设计的正确性.  相似文献   

10.
电动汽车用高效率DC/DC电源变换器设计   总被引:2,自引:0,他引:2  
为提高电动汽车用电源变换器效率,采用同步整流技术,设计一台基于BUCK电路的直流电源变换器。设计出变换器主电路和控制电路,计算变换器满载输出效率,并制作一台42V输入,12V/30A输出样机,实测样机满载输出效率达95.48%。  相似文献   

11.
为提高纯电动汽车制动时的再生制动能量回收率与汽车起步加速的动力性能,通过比较各种再生制动能量回收方案与储能方式,提出了在纯电动汽车的蓄电池回收制动能量的基础上加设液压制动能量回收系统。应用PID控制,在ECE-15循环工况下进行了仿真,并分析了整车的动力性能与能量的回收利用率。研究结果表明,在纯电动汽车上利用液压再生制动系统能够显著地提高整车的起步加速能力,并增加汽车的续驶里程28%左右。  相似文献   

12.
为使电动汽车在冰、雪等低附着系数路面上再生制动时,驱动轮具有防抱死功能,建立了单轮电动汽车动力学模型;基于变结构控制理论设计了调压调速型再生ABS控制器;仿真结果表明系统具有良好的稳定性、优越的动态性和足够的鲁棒性。  相似文献   

13.
赵玲  唐岚  吴晓花 《机械》2014,(4):18-21
为提高纯电动汽车的再生制动能量回收率,在分析基于理想制动力曲线和基于ECE法规的电动汽车前后轮制动力分配控制策略的基础上,根据制动强度和储能元件荷电状态的大小,提出了一种基于模糊逻辑的前后轮制动力分配控制策略,以实现制动能量的高效回收利用和良好的汽车制动稳定性。对该控制策略在电动汽车仿真软件ADVISOR2002下进行了仿真,仿真结果表明,该制动力分配控制策略提高了再生制动能量的回收率,同时也能改善汽车的制动稳定性。  相似文献   

14.
More than 25% of vehicle kinetic energy can be recycled under urban driving cycles. A single-pedal control strategy for regenerative braking is proposed to further enhance energy efficiency. Acceleration and deceleration are controlled by a single pedal, which alleviates driving intensity and prompts energy recovery. Regenerative braking is theoretically analyzed based on the construction of the single-pedal system, vehicle braking dynamics, and energy conservation law. The single-pedal control strategy is developed by considering daily driving conditions, and a single-pedal simulation model is established. Typical driving cycles are simulated to verify the effectiveness of the single-pedal control strategy. A dynamometer test is conducted to confirm the validity of the simulation model. Results show that using the single-pedal control strategy for electric vehicles can effectively improve the energy recovery rate and extend the driving range under the premise of ensuring safety while braking. The study lays a technical foundation for the optimization of regenerative braking systems and development of single-pedal control systems, which are conducive to the promotion and popularization of electric vehicles.  相似文献   

15.
为实现对履带车辆制动能量的有效回收和利用,分析了制动能量再生系统的工作原理,利用AMES im软件建立了系统模型;对履带车辆制动过程进行了仿真,研究了不同工况下系统主要参数的变化规律,总结出了参数变化对系统压力和液压泵/马达排量的影响规律。研究结果表明,该研究为履带车辆制动能量再生系统设计和液压元件选用提供了参考。  相似文献   

16.
Resolvers are normally employed for rotor positioning in motors for electric vehicles,but resolvers are expensive and vulnerable to vibrations.Hall sensors have the advantages of low cost and high reliability,but the positioning accuracy is low.Motors with Hall sensors are typically controlled by six-step commutation algorithm,which brings high torque ripple.This paper studies the high-performance driving and braking control of the in-wheel permanent magnetic synchronous motor(PMSM) based on low-resolution Hall sensors.Field oriented control(FOC) based on Hall-effect sensors is developed to reduce the torque ripple.The positioning accuracy of the Hall sensors is improved by interpolation between two consecutive Hall signals using the estimated motor speed.The position error from the misalignment of the Hall sensors is compensated by the precise calibration of Hall transition timing.The braking control algorithms based on six-step commutation and FOC are studied.Two variants of the six-step commutation braking control,namely,half-bridge commutation and full-bridge commutation,are discussed and compared,which shows that the full-bridge commutation could better explore the potential of the back electro-motive forces(EMF),thus can deliver higher efficiency and smaller current ripple.The FOC braking is analyzed with the phasor diagrams.At a given motor speed,the motor turns from the regenerative braking mode into the plug braking mode if the braking torque exceeds a certain limit,which is proportional to the motor speed.Tests in the dynamometer show that a smooth control could be realized by FOC driving control and the highest efficiency and the smallest current ripple could be achieved by FOC braking control,compared to six-step commutation braking control.Therefore,FOC braking is selected as the braking control algorithm for electric vehicles.The proposed research ensures a good motor control performance while maintaining low cost and high reliability.  相似文献   

17.
纯电动轿车制动能量回收系统研究   总被引:1,自引:0,他引:1  
李大伟  张戎斌  肖梦 《机械》2014,(1):36-40
针对某款量产纯电动轿车进行制动能量回收系统及控制研究。基于ABS开发回馈效率最优的制动能量回收系统。在满足ECE制动法规要求并尽量提高安全性和驾驶员感觉的前提下,提出一种最大制动能量回收控制策略,并利用Cruise软件对控制策略的有效性进行验证。在底盘测功机上测试制动能量回收系统效率,试验结果表明可实现ECE工况下整车续驶里程提升10%以上。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号