首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Phosphors of BaLiF3 doped with Eu or/and Ce were solvothermally prepared at 200°C for 5d and characterized by means of X-ray powder diffraction (XRD) and environment scanning electron microscopy (ESEM). The excitation and emission spectra of the rare earth ions doped BaLiF3 were measured by fluorescence spectroscopy and the effects of Ce3+ ions on the luminescence of Eu2+ ions were investigated. In the codoped Eu2+ and Ce3+ system, the emission intensity of Eu2+ ion gradually increased with the Ce3+ concentration increasing, and the enhancement of Eu2+ fluorescence was due to efficient energy transfer from Ce3+ to Eu2+ in the host.  相似文献   

2.
Eu-doped transparent oxyfluoride borosilicate glass ceramics containing Ba2GdF7 nanocrystals were prepared by controlling crys-tallization of melt-quenched glass fabricated under a reductive atmosphere.In the oxyfluoride borosilicate glass ceramics,the mean crystal size of Ba2GdF7 nanocrystals was about 30 nm,which could be observed by X-ray diffraction(XRD) and transmission electron microscopy analysis.The photoluminescence spectra of the samples excited at 392 nm showed that,besides the characteristic sharp emissions of Eu3+ ions,a very intense broadband emission of Eu2+ ions centered at 450 nm appeared.The photoluminescence intensity of Eu3+ and Eu2+ ions in the glass ceramics was much stronger than that in the as-made precursor.The long decay lifetimes of Eu3+ and Eu2+ ions evidenced the partitions of Eu3+ and Eu2+ ions into the Ba2GdF7 nanocrystals.The energy transfer from Gd3+ ions to Eu3+ and Eu2+ ions was confirmed by the excita-tion and emission spectra.  相似文献   

3.
Eu3+ and Ce3+ co-doped YPO4 microspheres were synthesized by hydrothermal method without template. The emission spectra showed that the red emission centered at 618nm could be readily increased relatively to the orange emission centered at 590nm by controlling the doping concentration of Ce3+ ion. The investigation based on excitation spectra and decay curves demonstrated that the doped Ce3+ ions took two efficient energy transfers to Eu3+ ions and affected the lifetime of the emission states of Eu3+ ions so that the emission spectra of Eu3+ ion were accordingly tuned with the Ce3+ content increasing. This controllable red (5D0→7F2) to orange ( 5D0→7F1) emission ratio of YPO4:Eu3+,Ce3+ made it very promising for encoded anti-fake labels and bio-labels.  相似文献   

4.
Eu^3+-doped Gd2Mo3O9 was prepared by solid-state reaction method using Na2CO3 as flux and characterized by powder X-ray diffractometry. According to X-ray diffraction, this material belonged to a tetragonal system with space group I41/α. The effects of flux content and sintering temperature on the luminescent properties were investigated with the emission and excitation spectra. The results showed that flux content and sintering temperature had effects on the luminescent properties, the optimized flux content and the best temperature was 3 % and 800 ℃ respectively. The excitation and emission spectra also showed that this phosphor could be effectively excited by C-T band (280 nm), ultraviolet light 395 nm and blue light 465 nm. The wavelengths at 395 and 465 nm were nicely fitting in with the widely applied output wavelengths of ultraviolet or blue LED chips. Integrated emission intensity of Gd2Mo3O9 : Eu was twice higher than that of Y2O2S : Eu^3 + under 395 nm excitation. The Eu^3+ doped Gd2Mo309 phosphor may be a better candidate in solid-state lighting applications.  相似文献   

5.
Nd3+,Eu3+ and Tb3+ ions doped transparent chlorophosphate glass ceramics were prepared and their frequency-conversion properties were studied. X-ray diffraction (XRD) patterns evidenced the formation of expected halide nanocrystals. The absorption,excitation and emission spectra investigation indicated that some of rare earth (RE) ions were trapped in low phonon energy halide nanocrystals,and therefore an efficient down frequency-conversion was observed. The comparative spectroscopic studies of RE doped samples suggested that the glass ceramics systems are potentially applicable as efficient ultraviolet to visible frequency-conversion photonics materials.  相似文献   

6.
Sol-gel method was utilized to synthesize two different series of red silicate phosphors:MgSiO3 and Mg2SiO4 powder samples doped with Mn2 , conducted the investigation of red long-lasting phosphor: MgSiO3:Eu2 , Dy3 , Mn2 . TGA curves of the gel precursor for two series depicted that the loss of residual organic groups and NO3 groups occurs below 450 ℃. According to the XRD patterns, the major diffraction peaks of the MgSiO3 and Mg2SiO4 series are consistent with a proto-enstatite structure (JCPDS No.11-0273) and a forsterite structure (JCPDS No.85-1364) respectively. With the excitation at 415 nm, the red emission band of Mn2 ions is peaked at 661 nm for MgSiO3:1%(atom fraction) Mn2 or 644 nm for Mg2SiO4:1%(atom fraction) Mn2 . Compared with Mg2SiO4:Mn2 samples, MgSiO3:Mn2 samples exhibit higher luminescence intensity and higher quenching concentration. In addition, the two series co-doped with Eu2 , Dy3 , Mn2 were also prepared. Photo-luminescence and afterglow properties of the two co-doped series were analyzed, which show that MgSiO3:Eu2 , Dy3 , Mn2 is more suitable for a red long-lasting phosphor.  相似文献   

7.
采用射频溅射法在硅片上沉积了Ca0.98WO4∶Eu0.02薄膜,利用正交试验研究了溅射时间、气压和功率对Ca0.98WO4∶Eu0.02薄膜的红光(615 nm)发光强度的影响。荧光分析表明,溅射法沉积的Ca0.98WO4∶Eu0.02薄膜需在700800℃热处理后才能强烈地表现出Eu3+离子的特征发光行为;正交试验说明,溅射气压、时间和功率对薄膜的发光强度都有重要影响,溅射气压的影响尤为重要。研究还表明,为提高发光强度,溅射气压宜控制在1.0 Pa左右,溅射时间在160 min。  相似文献   

8.
The luminescence properties of CdSiO3:RE^3 phosphors doped with various rare earth ions are reported. The series of rare earth ions doped CdSiO3 phosphors are prepared by the conventional high-temperature solid-state method, and characterized by XRD and photoluminescence (PL) spectra. The results of XRD measurement indicate that the products fired under 1050 ~C for 3 h have a good crystallization without any detectable amount of impure phase. The PL spectra measurement results show that CdSiO3 is a novel self-activated luminescent matrix. When rare earth ions such as Y^3 ,La^3 , Gd^3 , Lu^3 , Ce^3 , Nd^3 , Ho^3 , Er^3 , Tm^3 and Yb^3 are introduced into the CdSiO3 host, one broadband centered at about 420 nm resulted from traps can be observed. In the case of other earth ions which show emissions at the visible spectrum region, such as Pr^3 , Sm^3 , Eu^3 , Tb^3 and Dy3 , the mixture of their characteristic line emissions with the ~420 nm strong broadband luminescence results in various emitting colors. As a consequence, different emitting colors can be attairied via introducing certain appropriate active ions into the CdSiO3 matrix. In additional, this kind of phosphors shows good long-lasting properties when excited by UV light. All the results show that CdSiO3 is a potential luminance matrix.  相似文献   

9.
By using inorganic salts as raw materials and citric acid as complexing agent, α-Zn3(PO4)2 and Eu3 doped α-Zn3(PO4)2 phosphor powders were prepared by a citrate-gel process. X-ray diffraction(XRD), TG-DTA, FT-IR and luminescence excitation and emission spectra were used to characterize the resulting products. The results of XRD reveal that the powders begin to crystallize at 500 ℃ and pure α-Zn3(PO4)2 phase is obtained at 800 ℃. And the results of XRD reveal that Eu3 exists as EuPO4 in the powder. In the phosphor powders, the Eu3 shows its characteristic red-orange(592 nm, 5D0-7F1) emission and has no quenching concentration.  相似文献   

10.
The luminescent properties of Eu3 doped Ca2SiO4 red phosphors synthesized by the flux fusion reaction method were investigated. It was found that the excitation spectrum included two regions: the weak excitation band below 325 nm and strong narrow peaks above 325 nm. The main peak of the excitation band was located at 400 nm. The peaks located at 290 nm were assigned to the combination of the charge transfer transition of O-Eu, peaks above 325 nm (325, 385, 400, 470, 511, and 539 nm) were assigned to the f–f transitions of Eu3 . The emission spectrum was dominated by the red peak located at 612 nm due to the electric dipole transition of 5D0–7F2. In addition, the ef- fects of the Eu3 content and charge compensators of Li , Na , K , and Cl– ions on the emission intensity were investigated. The experiment results suggested that the strongest emission was obtained when the concentration of the Eu3 ions was 0.3 mol–1, and Li ions gave the best improvement to enhance the emission intensity. Ca2SiO4:Eu3 , Li was thus suitable for low-cost trichromatic white light emitting diodes (WLED) based on UV InGaN chip.  相似文献   

11.
Using CaCO3, metal oxides (all dissolved by nitric acid) and tetraethoxysilane Si (OC2H5 )4 (TEOS) as the main starting materials, Ca2Y8 (SiO4 )6O2: Eu3 phosphors were synthesized by spray pyrolysis.X-ray diffraction (XRD), scanning electron microscopy (SEM) and photoluminescence (PL) spectra as well as lifetimes were used to characterize the resulting phosphors.The results of XRD indicated that the 1000 ℃ annealed powders crystallize with the silicate oxyapatite structure.SEM study revealed that the phosphors consist of spherical particles with an average size of about 1 ~ 3 μm.In the crystalline Ca2 Y8 (SiO4)6O2: Eu3 phosphor, the Eu3 shows its characteristic emission corresponding to 5 D0 - 7 FJ ( J = 0, 1,2, 3, 4) transitions, with 5D0 - 7 F2 red emission (613 nm) as the most prominent group, agreeing well with the structure of the host material.  相似文献   

12.
Uniform core-shell Eu3+:Y2O3/SiO2 spheres were synthesized via precipitation and the Stber method.The structural transition of core-shell Eu3+:Y2O3/SiO2 was studied by using high pressure photoluminescence spectra.With pressure increasing,the emission intensities of 5D0→7F0,1,2 transitions of Eu3+ ions decreased and the transition lines showed a red shift.The relative luminescence intensity ratio of 5D0→7F2 to 5D0→7F1 transitions decreased with increasing pressure,indicating lowering asymmetry around Eu3+ ions.During compression,structural transformation for cores in the present core-shell Eu3+:Y2O3/SiO2 sample from cubic to monoclinic took place at 7.5 GPa,and then the monoclinic structure turned into hexagonal above 15.2 GPa.After the pressure was released,the hexagonal structure transformed back to monoclinic and the monoclinic structure was kept stable to ambient pressure.  相似文献   

13.
SpectralPropertiesandSensitizationofCe3+andEu2+CodopedCalciumZincChlorosilicateLinHai(林海),LiuXingren(刘行仁),ZhangXiao(张晓)(Cha...  相似文献   

14.
By heat treating the alkaline earth fluorosilicate glass, transparent glass ceramics containing alkaline earth fluoride nanocrystallites were prepared. The luminescence spectra and phonon sideband associated with the Eu3+:5D2→7F0 in glass and glass ceramics were investi-gated to analyze the local environment around Eu3+. Judd-Ofelt parameters were also calculated from emission spectra, which indicated that the Eu3+ ions entered the precipitated CaF2, SrF2, and BaF2 nanocrystallites. Heat treating could not pledge Eu3+ ions to coordinate with F in the precipitated MgF2 nanocrystallites, owing to the smaller radius of Mg2+ than that of Eu3+.  相似文献   

15.
The titanium barium glass microspheres doped with Er2O3 were designed and prepared. The components of the glass sample were 25TiO2-27BaCO3-8Ba(NO3)2-5ZnO2-10CaCO3-5H3BO3-10SiO2-7water glass-3Er2O3 (%, mass fraction). The emission spectra of titanium barium glass matrix and the titanium barium glass microsphere under 514 nm excitation were measured with micro-Raman spectrometer. Whispering gallery modes in the emission spectra from a 31 μm glass microsphere were observed. Many regularly spaced, sharp peaks appeared in the emission spectra of the Er2O3-doped glass microsphere. The wavelength separation between the two adjacent peaks is 1.92 nm for the 31 μm microsphere. According to the Lorenz-Mie formula, the calculated value of the wavelength separation between the two adjacent peaks is 1.95 nm. The observed resonances could be assigned by using the well-known Lorenz-Mie formula.  相似文献   

16.
The new phosphor calcium magnesium chlorosilicate, codoped with Eu^2+ and Dy^3+, was synthesized with the help of the high temperature solid state reaction in reducing atmosphere. The excitation and emission spectra were very similar to that of Ca8Mg(SiO4)4Cl2 :Eu^2+, and the Dy^3+ concentration influenced the emission intensity of this phosphor. The intensity of Eu^2+ and Dy^3+ codoped CMSC was stronger than that of Eu^2+ singly doped CMSC. The emission spectrum of the Dy^3+ ion overlapped the absorption band of the Eu^2+ ion, indicating that an energy transfer from Dy^3+ to Eu^2+ took place in CMSC:Eu^2+, Dy^3+ phosphor. The mechanism of the energy transfer from Dy^3+ tO Eu^2+, in this phosphor, might be resonant energy transfer.  相似文献   

17.
Phosphors with controlled emission spectra are of great interest due to their application for white light emitting diodes.Herein, a new class of Sr3Y2(SiO3)6:Ce3+,Tb3+ phosphors were synthesized by a facile sol-gel combustion method. The phase structure,morphology, and luminescence properties of the phosphors were characterized by using powder X-ray diffraction(XRD), scanning electron microscopy(SEM), transmission electron microscopy(TEM), and photoluminescence excitation and emission spectra,respectively. The results on luminescence properties indicated that co-doped Ce3+ ions served as UV-light sensitizers with excitation energy partially transferred to Tb3+ ions, leading to green emission from Tb3+. Particularly, the corresponding emitting colors of the phosphors could be well-tuned from deep blue(0.16, 0.05) to green region(0.25, 0.45) by adjusting the molar ratio of Ce3+/Tb3+.  相似文献   

18.
The study on the effects of SrO/Al2O3molar ratio on the crystalline phases and photoluminescence characteistics of strontium aluminate phosphors co-activated with Eu^2 andDy^3 were conductde by X-ray powder diffractometry ,fluorescence spectrometer and photometer.The strontium aluminate luminescent materials with different Sro/Al2O3molar ratio emit the visible lights with different color tone after removal of excitation.The peak wavelengths of the emission spectra drift in the direction of short wave,the quantity of Sr4A114O25crystalline phase molar ratio is near 1,the photoluminescence materials have high luminescent intensity,and when it is near0.75,they have long afterglow time.However,when SrO/Al2O3molar ratio is more than1,the luminescent materials appear strong alkaline in water solution;when SrO/Al2O3molar ratio is much less than 0.75,the samples need a higher temperature to be sintered.  相似文献   

19.
A method to fabricate europium ions doped-high silica glass for transparent fluorescence materials based on the fabrication and sintering technique of nano-porous silica glass was reported. Glasses impregnated with Eu ions and sintered at above 1150 ℃ in a reduction atmosphere show a very strong blue light from an emission band at about 430 nm due to the 4f65d→4f7(8S7/2) transition of the Eu2 ions. On the other hand, the Eu-doped glass obtained by co-impregnated with Y3 and V5 ions and sintering in oxidation atmosphere behaves a very strong red emission band at about 615 nm with a UV excitation. An appearance of vanadate band in the excitation spectrum of Eu3 , Y3 and V5 ions co-doped high silica glass implies an effective energy transferring from VO43- to Eu3 and effective excitation of Eu3 by about 500 nm strong broad emission of VO43-.  相似文献   

20.
A new aluminate host material Ca3ZnAl4O10 doped with Eu2+ was prepared by a high-temperature solid-state reaction method, and a pure crystalline phase of Ca3ZnAl4O10 was confirmed with X-ray powder diffraction (XRD) measurement. The luminescent property was investigated with excitation and emission spectra. The phosphor could be excited by UV light from 220 nm to 400 nm and emitted a blue luminescence peaked at 450 nm, which corresponded to the 4f65d1→4f7 transition of Eu2+ ions. The dependence of luminesce...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号