首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
NiOxHy films were prepared by DC magnetron sputtering in H2/O2 atmosphere. NiOxHy coatings with transparency and high electrochromic efficiency were obtained by changing H2 content. A 60 nm thick NiOxHy film with transmittance of 0.57 (as-deposited state), 0.78 (bleached state) and 0.24 (coloured state) at wavelength of 550 nm was deposited in an atmosphere of H2(60%)+O2(40%). Analysis of infrared spectra (60002400 cm−1) showed that the absorption peaks for bleached and colored states are associated with free ‘OH’ and OH stretching vibrations, respectively. XPS Ni2p core level spectra of colored NiOxHy film exhibited a peak at 856.2±0.2 eV which is attributed to Ni3+. Ni2p core level spectra of the bleached and as-deposited films exhibited two peaks at 856.4±0.2 and 854.6±0.2 eV which are attributed to Ni3+ and Ni2+.  相似文献   

2.
Nickel oxide (NiOx) thin films were prepared by the chemical deposition method (solution growth) on two kinds of substrates: (1) glass and (2) glass/SnO2 : F. Films were thermally treated at 200°C for 10 min in atmosphere. The texture, microstructure and composition were examined by optical microscopy, X-ray diffraction patterns (XRD) and X-ray photoelectron spectroscopy (XPS) analysis of the surface layer. The films exhibited anode electrochromism. The optical properties of the bleached and colored state were examined with transmittance spectroscopy in the visible region and reflectance FTIR spectroscopy. An electrochromic test device (ECTD), consisting of SnO2/NiOx/NaOH–H2O/SnO2, was assembled and tested by cyclic voltammetry combined with a simultaneous recording of the change of transparency at λ=670 nm. The coloration efficiency was evaluated to be 24.3 cm2/C. The spontaneous ex-situ change of coloration with time of the colored and bleached NiOx/SnO2/glass was also examined.  相似文献   

3.
Cd1−xZnxTe alloy films with 1.6 and 1.7 eV band gaps were deposited by RF magnetron sputtering from targets made either of mixed powders or alloys of CdTe and ZnTe (25% and 40%). High-quality polycrystalline films with the (1 1 1) preferred orientation were obtained. The films were characterized using X-ray diffraction (XRD), scanning electron microscopy, resistivity, optical absorption, Raman, and photoluminescence. The EDS, XRD, and optical absorption analysis indicated that the x-value of the as-grown films were typically 0.20 and 0.30 for films sputtered from 25% and 40% ZnTe containing targets, respectively. The as-deposited alloy films exhibit quite low photovoltaic performance when used to make cells with CdS as the hetero-junction partner. Therefore, we have studied various post-deposition treatments with vapors of chlorine-containing materials, CdCl2 and ZnCl2, in dry air or H2/Ar ambient at 390 °C. The best performance of a Cd1−xZnxTe cell (, ) was found for treatment with vapors of the mixed CdCl2+0.5%ZnCl2 in an H2/Ar ambient after pre-annealing at 520 °C in pure H2/Ar.  相似文献   

4.
Electrochromic films of NiOx and WOx were produced by the spray pyrolysis technique. The nickel-oxide-based coatings were obtained from an aqueous solution of nickel nitrate. Those obtained below 300° C did not show any diffraction peak when subjected to X-ray diffraction analysis, and those obtained above 400° C showed a diffraction pattern corresponding to cubic NiO. Films obtained below 300° C showed an electrochromic effect with an electrochromic efficiency of 30 cm2/C.Tungsten-oxide-based coatings were obtained from a solution of H2WO4 in aqueous ammonia. The films were grown at 150° C, and they showed a diffraction pattern corresponding to monoclinic WO3 when subjected to a post-heat treatment at 400° C during ten minutes. The WOx films showed a noticeable electrochromism under cation insertion, and presented an electrochromic efficiency of 42 cm2/C. Both as-deposited and heat-treated samples showed good electrochromism.  相似文献   

5.
CdxZn1−xO films have been deposited by sol–gel spin-coating method onto glass substrates. The Cd/Zn ratio in solution was changed from 0 to 1. Zinc acetate dehydrates, cadmium acetate dehydrates, 2-methoxyethanol and monoethanolamine were used as a starting material (zinc and cadmium), solvent and stabilizer, respectively. The crystal structure and orientation of the films were investigated by X-ray diffraction (XRD) patterns. XRD patterns show that the films are polycrystalline nature. As x varies from 0 to 1, it was observed that the crystal structure changed from wurtzite (ZnO) to cubic (CdO) structure. The optical properties of these films have been investigated by means of the optical transmittance and reflectance spectra. A significant change in optical absorption edge, optical band gap and optical constant with variation in composition was observed.  相似文献   

6.
CuInxGa1−xSe2 (CIGS) polycrystalline thin films with various Ga to In ratios were grown using a new two-step electrodeposition process. This process involves the electrodeposition of a Cu–Ga precursor film onto a molybdenum substrate, followed by the electrodeposition of a Cu–In–Se thin film. The resulting CuGa/CuInSe bilayer is then annealed at 600°C for 60 min in flowing Argon to form a CIGS thin film. The individual precursor films and subsequent CIGS films were characterized by X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy and Auger electron spectroscopy. The as-deposited precursor films were found to be crystalline with a crystal structure matching that of CuGa2. The annealed bi-layers were found to have the same basic chalcopyrite structure of CuInSe2, but with peak shifts due to the Ga incorporation. Energy dispersive spectroscopy results show that the observed shifts correlate to the composition of the films.  相似文献   

7.
The structural, transport and optical properties of screen printed CuxS thick films with possible application in photovoltaic and photothermal devices are reported. The X-ray diffraction studies show that the screen printed films are stable up to about 220°C in air and belong to the CuxS structure. Above this temperature it decomposes mainly to CuSO4. The electrical conductivity depends on the sintering temperature and the amount of flux, Cu(NO3)2, used in the paste for screen printing. The differential scanning calorimetry studies reveal the phase changes occurring during heating and pertaining to the dependence of electrical conductivity on the sintering temperature. A configuration consisting of screen printed CuxS on chemically deposited and annealed (at 200°C) CdS thin film exhibited rectification.  相似文献   

8.
CuIn1−xGaxSe2 polycrystalline thin films were prepared by a two-step method. The metal precursors were deposited either sequentially or simultaneously using Cu–Ga (23 at%) alloy and In targets by DC magnetron sputtering. The Cu–In–Ga alloy precursor was deposited on glass or on Mo/glass substrates at either room temperature or 150°C. These metallic precursors were then selenized with Se pellets in a vacuum furnace. The CuIn1−xGaxSe2 films had a smooth surface morphology and a single chalcopyrite phase.  相似文献   

9.
CdO/c-Si solar cells have been made by depositing CdO thin films on p-type monocrystalline silicon substrate by means of the rapid thermal oxidation (RTO) technique using a halogen lamp at 350 °C/45 s in static air. Results on structural, optical, and electrical properties of grown CdO films are reported. The electrical and photovoltaic properties of CdO/Si solar cells are examined. Under AM1 illumination condition, the cell shows an open circuit voltage (VOC) of 500 mV, a short circuit current density (JSC) of 27.5 mA/cm2, a fill factor (FF) of 60%, and a conversion efficiency (η) of 8.84% without using frontal grid contacts and/or post-deposition annealing. Furthermore, the stability of solar cells characteristics is tested.  相似文献   

10.
Zn1−xMgxO:Al thin films have been prepared on glass substrates by pulsed laser deposition (PLD). The effect of substrate temperature has been investigated from room temperature to 500 °C by analyzing the structural, optical and electrical properties. The best sample deposited at 250 °C shows the lowest room-temperature resistivity of 5.16×10−4 Ω cm, and optical transmittance higher than 80% in the visible region. It is observed that the optical band gap decreases from 3.92 to 3.68 eV when the substrate temperature increases from 100 to 500 °C. The probable mechanism is discussed.  相似文献   

11.
A simple spray method for the preparation of pyrite (FeS2) thin films has been studied using FeSO4 and (NH4)2Sx as precursors for Fe and S, respectively. Aqueous solutions of these precursors are sprayed alternately onto a substrate heated up to 120°C. Although Fe–S compounds including pyrite are formed on the substrate by the spraying, sulfurization of deposited films is needed to convert other phases such as FeS or marcasite into pyrite. A single-phase pyrite film is obtained after the sulfurization in a H2S atmosphere at around 500°C for 30 min. All pyrite films prepared show p-type conduction. They have a carrier concentration (p) in the range 1016–1020 cm−3 and a Hall mobility (μH) in the range 200–1 cm2/V s. The best electrical properties (p=7×1016 cm−3, μH=210 cm2/V s) for a pyrite film prepared here show the excellence of this method. The use of a lower concentration FeSO4 solution is found to enhance grain growth of pyrite crystals and also to improve electrical properties of pyrite films.  相似文献   

12.
Modified tungsten oxide films by vanadium oxide provide neutrally coloring electrochromic electrodes for smart windows technology. In this study W–V–O mixed oxide films were fabricated by Nd:YAG pulsed laser deposition (PLD), λ=1064 nm, from mixed pressed powders of (WO3)1−x(V2O5)x, x=0, 0.09, 0.17, 0.23, 0.29 and 0.33, at 13.3 Pa oxygen partial pressure and 200 °C temperature on glass substrates. X-ray photoelectron spectroscopy (XPS) revealed V5+, V4+, W6+ and W5+ surface oxide states, where the ratio of W5+/W6+ enhances by the amount of vanadium in the films. Surface morphology was studied by scanning electron microscope (SEM) and optical properties by transmission-reflection spectra. Results showed that films with a low amount of vanadium oxide have better porosity and higher optical band gaps. The gasochromic response to hydrogen gas exposure was found better for x=0.09 in the sense of both deeper and faster coloring. Weak responses of samples with more vanadium oxide were attributed to higher amounts of W5+ in the films and also to lower porosity.  相似文献   

13.
Polycrystalline thin films of CuIn1−xGaxTe2 have been deposited by flash evaporation on Corning glass 7059 substrates at Ts=200°C. Hall and resistivity measurements have been carried out down to 77 K. These films are p-type and the variation of the resistivity may be linked to defects, disorder of the material or grain boundaries. The PL spectra of these films after annealing in argon atmosphere at Ta=450°C have showed a broad band emission between 0.98 and 1.12 eV in which the main peak appears at 1.05 eV (at 4.2 K).  相似文献   

14.
Structural and optical properties of e-beam deposited tungsten trioxide (WO3) films in as-deposited and electrochemically coloured states were investigated by spectrophotometric and XRD techniques. These investigations have shown the as-deposited WO3 films to be porous and with small amount of HxWO3 pre-existing in them. The films further facilitate insertion of H+ ions on colouration resulting in tetragonal HxWO3 with a = 4.74Å and c = 3.19Å.  相似文献   

15.
A series of cobalt-free and low cost BaCexFe1−xO3−δ (x = 0.15, 0.50, 0.85) materials are successful synthesized and used as the cathode materials for proton-conducting solid oxide fuel cells (SOFCs). The single cell, consisting of a BaZr0.1Ce0.7Y0.2O3−δ (BZCY7)-NiO anode substrate, a BZCY7 anode functional layer, a BZCY7 electrolyte membrane and a BaCexFe1−xO3−δ cathode layer, is assembled and tested from 600 to 700 °C with humidified hydrogen (3% H2O) as the fuel and the static air as the oxidant. Within all the cathode materials above, the cathode BaCe0.5Fe0.5O3−δ shows the highest cell performance which could obtain an open-circuit potential of 0.99 V and a maximum power density of 395 mW cm−2 at 700 °C. The results indicate that the Fe-doped barium cerates can be promising cathodes for proton-conducting SOFCs.  相似文献   

16.
II–VI polycrystalline semiconducting materials have come under increased scrutiny because of their wide use in the cost reduction of devices for photovoltaic applications. Cd1−xZnxSe is an important semiconducting alloy because of the tunability of its physical parameters such as band gap and lattice parameters by controlling its stoichiometry. Many more material characteristics of it would be altered and excellently controlled by controlling system composition x.Polycrystalline thin films of Cd1−xZnxSe with variable composition (0x1) have been deposited onto ultra-clean glass substrates by sintering process. The optical, structural and electrical transport properties of Cd1−xZnxSe thin films have been examined. The optical band gap and optical constants of these films were determined by using double beam spectrophotometer. The DC conductivity and activation energy of the films were measured in vacuum by two-probe technique. The Schottky junction of Cd1−xZnxSe with indium was made and the barrier height and ideality factor were determined using current–voltage characteristics. The nature of sample, crystal structure and lattice parameters were determined from X-ray diffraction patterns. The films were polycrystalline in nature having cubic zinc-blende structure over the whole range studied.Sintering is very simple and viable compared to other cost intensive methods. The results of the present investigation will be useful in characterizing the material, Cd1−xZnxSe, for its applications in photovoltaics.  相似文献   

17.
Cathode materials consisting of Pr1−xSrxCo0.8Fe0.2O3−δ (x = 0.2–0.6) were prepared by the sol–gel process for intermediate-temperature solid oxide fuel cells (IT-SOFCs). The samples had an orthorhombic perovskite structure. The electrical conductivities were all higher than 279 S cm−1. The highest conductivity, 1040 S cm−1, was found at 300 °C for the composition x = 0.4. Symmetrical cathodes made of Pr0.6Sr0.4Co0.8Fe0.2O3−δ (PSCF)–Ce0.85Gd0.15O1.925 (50:50 by weight) composite powders were screen-printed on GDC electrolyte pellets. The area specific resistance value for the PSCF–GDC cathode was as low as 0.046 Ω cm2 at 800 °C. The maximum power densities of a cell using the PSCF–GDC cathode were 520 mW cm−2, 435 mW cm−2 and 303 mW cm−2 at 800 °C, 750 °C and 700 °C, respectively.  相似文献   

18.
S. M. Rozati  T. Ganj 《Renewable Energy》2004,29(10):1665-1669
Transparent conducting fluorine doped indium oxide (In2O3:F) thin films have been deposited on Corning 7059 glass substrates by the spray pyrolysis technique. The structural, electrical, and optical properties of these films were investigated as a function of substrate temperature. The X-ray diffraction pattern of the films deposited at lower substrate temperature (Ts=300 °C) showed no peaks of In2O3:F. In the useful range for deposition (i.e. 425–600 °C), the orientation of the films was predominantly [400]. For the 4500 Å thick In2O3:F deposited with an F content of 10-wt%, the minimum sheet resistance was 120 Ω and average transmission in the visible wavelength rang (400–700 nm) was 88%.  相似文献   

19.
We investigated a simple field effect passivation of the silicon surfaces using the high-pressure H2O vapor heating. Heat treatment with 2.1×106 Pa H2O vapor at 260°C for 3 h reduced the surface recombination velocity from 405 cm/s (before the heat treatment) to 38 cm/s for the thermally evaporated SiOx film/Si. Additional deposition of 140 nm-SiOx films (x<2) with a high density of fixed positive charges on the SiO2/Si samples further decreased the surface recombination velocity to 22 cm/s. We also demonstrated the field effect passivation for n-type silicon wafer coated with thermally grown SiO2. Additional deposition of 210 nm SiOx films on both the front and rear surfaces increased the effective lifetime from 1.4 to 4.6 ms. Combination of thermal evaporation of SiOx film and the heat treatment with high-pressure H2O vapor is effective for low-temperature passivation of the silicon surface.  相似文献   

20.
Nanocrystalline stoichiometric [Mo(S1−xSex)2] thin films were deposited by using arrested precipitation technique (APT) developed in our laboratory. The precursors used for this are namely, molybdenum triethanolamine complex, thioacetamide and sodium selenosulphite; and various preparative conditions are finalised at the initial stages of deposition. Formation of [Mo(S1−xSex)2] semiconducting thin films are confirmed by studying growth mechanism, optical and electrical properties. X-ray diffraction analysis showed that the composites are nanocrystalline being mixed ternary chalcogenides of the general formula [Mo(S1−xSex)2]. The optical studies revealed that the films are highly absorptive (α×104 cm−1) with a band-to-band direct type of transitions and the energy gap decreased typically from 1.86 eV for pure MoS2 down to 1.42 eV for MoSe2. The thermoelectrical power measurement shows negative polarity for the generated voltage across the two ends of semiconductor thin films. This indicate that the [Mo(S1−xSex)2] thin film samples show n-type conduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号