首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report a robust method for engineering the optoelectronic properties of many‐layer MoS2 using low‐energy oxygen plasma treatment. Gas phase treatment of MoS2 with oxygen radicals generated in an upstream N2–O2 plasma is shown to enhance the photoluminescence (PL) of many‐layer, mechanically exfoliated MoS2 flakes by up to 20 times, without reducing the layer thickness of the material. A blueshift in the PL spectra and narrowing of linewidth are consistent with a transition of MoS2 from indirect to direct bandgap material. Atomic force microscopy and Raman spectra reveal that the flake thickness actually increases as a result of the plasma treatment, indicating an increase in the interlayer separation in MoS2. Ab initio calculations reveal that the increased interlayer separation is sufficient to decouple the electronic states in individual layers, leading to a transition from an indirect to direct gap semiconductor. With optimized plasma treatment parameters, we observed enhanced PL signals for 32 out of 35 many‐layer MoS2 flakes (2–15 layers) tested, indicating that this method is robust and scalable. Monolayer MoS2, while direct bandgap, has a small optical density, which limits its potential use in practical devices. The results presented here provide a material with the direct bandgap of monolayer MoS2, without reducing sample thickness, and hence optical density.  相似文献   

2.
A facile approach for the synthesis of Au‐ and Pt‐decorated CuInS2 nanocrystals (CIS NCs) as sensitizer materials on the top of MoS2 bilayers is demonstrated. A single surfactant (oleylamine) is used to prepare such heterostructured noble metal decorated CIS NCs from the pristine CIS. Such a feasible way to synthesize heterostructured noble metal decorated CIS NCs from the single surfactant can stimulate the development of the functionalized heterostructured NCs in large scale for practical applications such as solar cells and photodetectors. Photodetectors based on MoS2 bilayers with the synthesized nanocrystals display enhanced photocurrent, almost 20–40 times higher responsivity and the On/Off ratio is enlarged one order of magnitude compared with the pristine MoS2 bilayers‐based photodetectors. Remarkably, by using Pt‐ or Au‐decorated CIS NCs, the photocurrent enhancement of MoS2 photodetectors can be tuned between blue (405 nm) to green (532 nm). The strategy described here acts as a perspective to significantly improve the performance of MoS2‐based photodetectors with the controllable absorption wavelengths in the visible light range, showing the feasibility of the possible color detection.  相似文献   

3.
Iron sulfides with high theoretical capacity and low cost have attracted extensive attention as anode materials for sodium ion batteries. However, the inferior electrical conductivity and devastating volume change and interface instability have largely hindered their practical electrochemical properties. Here, ultrathin amorphous TiO2 layer is constructed on the surface of a metal–organic framework derived porous Fe7S8/C electrode via a facile atomic layer deposition strategy. By virtue of the porous structure and enhanced conductivity of the Fe7S8/C, the electroactive TiO2 layer is expected to effectively improve the electrode interface stability and structure integrity of the electrode. As a result, the TiO2‐modified Fe7S8/C anode exhibits significant performance improvement for sodium‐ion batteries. The optimal TiO2‐modified Fe7S8/C electrode delivers reversible capacity of 423.3 mA h g?1 after 200 cycles with high capacity retention of 75.3% at 0.2 C. Meanwhile, the TiO2 coating is conducive to construct favorable solid electrolyte interphase, leading to much enhanced initial Coulombic efficiency from 66.9% to 72.3%. The remarkable improvement suggests that the interphase modification holds great promise for high‐performance metal sulfide‐based anode materials for sodium‐ion batteries.  相似文献   

4.
1T phase MoS2 possesses higher conductivity than the 2H phase, which is a key parameter of electrochemical performance for lithium ion batteries (LIBs). Herein, a 1T‐MoS2/C hybrid is successfully synthesized through facile hydrothermal method with a proper glucose additive. The synthesized hybrid material is composed of smaller and fewer‐layer 1T‐MoS2 nanosheets covered by thin carbon layers with an enlarged interlayer spacing of 0.94 nm. When it is used as an anode material for LIBs, the enlarged interlayer spacing facilitates rapid intercalating and deintercalating of lithium ions and accommodates volume change during cycling. The high intrinsic conductivity of 1T‐MoS2 also contributes to a faster transfer of lithium ions and electrons. Moreover, much smaller and fewer‐layer nanosheets can shorten the diffusion path of lithium ions and accelerate reaction kinetics, leading to an improved electrochemical performance. It delivers a high initial capacity of 920.6 mAh g?1 at 1 A g?1 and the capacity can maintain 870 mAh g?1 even after 300 cycles, showing a superior cycling stability. The electrode presents a high rate performance as well with a reversible capacity of 600 mAh g?1 at 10 A g?1. These results show that the 1T‐MoS2/C hybrid shows potential for use in high‐performance lithium‐ion batteries.  相似文献   

5.
Potassium has its unique advantages over lithium or sodium as a charge carrier in rechargeable batteries. However, progresses in K‐ion battery (KIB) chemistry have so far been hindered by lacking suitable electrode materials to host the relatively large K+ ions compared to its Li+ and Na+ counterparts. Herein, molybdenum disulfide (MoS2) “roses” grown on reduced graphene oxide sheets (MoS2@rGO) are synthesized via a two‐step solvothermal route. The as‐synthesized MoS2@rGO composite, with expanded interlayer spacing of MoS2, chemically bonded between MoS2 and rGO, and a unique nano‐architecture, displays the one of the best electrochemical performances to date as an anode material for nonaqueous KIBs. More importantly, a combined K+ storage mechanism of intercalation and conversion reaction is also revealed. The findings presented indicate the enormous potential of layered metal dichalcogenides as advanced electrode materials for high‐performance KIBs and also provide new insights and understanding of K+ storage mechanism.  相似文献   

6.
MoS2 becomes an efficient and durable nonprecious‐metal electrocatalyst for the hydrogen evolution reaction (HER) when it contains multifunctional active sites for water splitting derived from 1T‐phase, defects, S vacancies, exposed Mo edges with expanded interlayer spacings. In contrast to previously reported MoS2‐based catalysts targeting only a single or few of these characteristics, the all‐in‐one MoS2 catalyst prepared herein features all of the above active site types. During synthesis, the intercalation of in situ generated NH3 molecules into MoS2 sheets affords ammoniated MoS2 (A‐MoS2) that predominantly comprises 1T‐MoS2 and exhibits an expanded interlayer spacing. The subsequent reduction of A‐MoS2 results in the removal of intercalated NH3 and H2S to form an all‐in‐one MoS2 with multifunctional active sites mentioned above (R‐MoS2) that exhibits electrocatalytic HER performance in alkaline media superior to those of all previously reported MoS2‐based electrocatalysts. In particular, a hybrid MoS2/nickel foam catalyst outperforms commercial Pt/C in the practically meaningful high‐current region (>25 mA cm?2), demonstrating that R‐MoS2‐based materials can potentially replace Pt catalysts in practical alkaline HER systems.  相似文献   

7.
Sodium‐ion batteries (SIBs) are considered a prospective candidate for large‐scale energy storage due to the merits of abundant sodium resources and low cost. However, a lack of suitable advanced anode materials has hindered further applications. Herein, metal–semiconductor mixed phase twinned hierarchical (MPTH) MoS2 nanowires with an expanded interlayer (9.63 Å) are engineered and prepared using MoO3 nanobelts as a self‐sacrificed template in the presence of a trace amount of (NH4)6Mo7O24·4H2O as initiator. The greatly expanded interlayer spacing accelerates Na+ insertion/extraction kinetics, and the metal–semiconductor mixed phase enhances electron transfer ability and stabilizes electrode structure during cycling. Benefiting from the structural merits, the MPTH MoS2 electrode delivers high reversible capacities of 200 mAh g?1 at 0.1 A g?1 for 200 cycles and 154 mAh g?1 at 1 A g?1 for 2450 cycles in the voltage range of 0.4–3.0 V. Strikingly, the electrode maintains 6500 cycles at a current density of 2 A g?1, corresponding to a capacity retention of 82.8% of the 2nd cycle, overwhelming the all reported MoS2 cycling results. This study provides an alternative strategy to boost SIB cycling performance in terms of reversible capacity by virtue of interlayer expansion and structure stability.  相似文献   

8.
Layered van der Waals heterostructures have attracted considerable attention recently, due to their unique properties both inherited from individual two‐dimensional (2D) components and imparted from their interactions. Here, a novel few‐layer MoS2/glassy‐graphene heterostructure, synthesized by a layer‐by‐layer transfer technique, and its application as transparent photodetectors are reported for the first time. Instead of a traditional Schottky junction, coherent ohmic contact is formed at the interface between the MoS2 and the glassy‐graphene nanosheets. The device exhibits pronounced wavelength selectivity as illuminated by monochromatic lights. A responsivity of 12.3 mA W?1 and detectivity of 1.8 × 1010 Jones are obtained from the photodetector under 532 nm light illumination. Density functional theory calculations reveal the impact of specific carbon atomic arrangement in the glassy‐graphene on the electronic band structure. It is demonstrated that the band alignment of the layered heterostructures can be manipulated by lattice engineering of 2D nanosheets to enhance optoelectronic performance.  相似文献   

9.
A simple thermal annealing method for layer thinning and etching of mechanically exfoliated MoS2 nanosheets in air is reported. Using this method, single‐layer (1L) MoS2 nanosheets are achieved after the thinning of MoS2 nanosheets from double‐layer (2L) to quadri‐layer (4L) at 330 °C. The as‐prepared 1L MoS2 nanosheet shows comparable optical and electrical properties with the mechanically exfoliated, pristine one. In addition, for the first time, the MoS2 mesh with high‐density of triangular pits is also fabricated at 330 °C, which might arise from the anisotropic etching of the active MoS2 edge sites. As a result of thermal annealing in air, the thinning of MoS2 nanosheet is possible due to its oxidation to form MoO3. Importantly, the MoO3 fragments on the top of thinned MoS2 layer induces the hole injection, resulting in the p‐type channel in fabricated field‐effect transistors.  相似文献   

10.
Molybdenum disulfide (MoS2), a typical 2D metal dichalcogenide (2DMD), has exhibited tremendous potential in optoelectronic device applications, especially in photodetection. However, due to the weak light absorption of planar mono‐/multilayers, limited cutoff wavelength edge, and lack of high‐quality junctions, most reported MoS2‐based photodetectors show undesirable performance. Here, a structurized 3D heterojunction of RGO–MoS2/pyramid Si is demonstrated via a simple solution‐processing method. Owing to the improved light absorption by the pyramid structure, the narrowed bandgap of the MoS2 by the imperfect crystallinity, and the enhanced charge separation/transportation by the inserted reduced graphene oxide (RGO), the assembled photodetector exhibits excellent performance in terms of a large responsivity of 21.8 A W?1, extremely high detectivity up to 3.8 × 1015 Jones (Jones = cm Hz1/2 W?1) and ultrabroad spectrum response ranging from 350 nm (ultraviolet) to 4.3 µm (midwave infrared). These device parameters represent the best results for MoS2‐based self‐driven photodetectors, and the detectivity value sets a new record for the 2DMD‐based photodetectors reported thus far. Prospectively, the design of novel 3D heterojunction can be extended to other 2DMDs, opening up the opportunities for a host of high‐performance optoelectronic devices.  相似文献   

11.
2D transition metal dichalcogenides (TMDCs) have emerged as promising candidates for post‐silicon nanoelectronics owing to their unique and outstanding semiconducting properties. However, contact engineering for these materials to create high‐performance devices while adapting for large‐area fabrication is still in its nascent stages. In this study, graphene/Ag contacts are introduced into MoS2 devices, for which a graphene film synthesized by chemical vapor deposition (CVD) is inserted between a CVD‐grown MoS2 film and a Ag electrode as an interfacial layer. The MoS2 field‐effect transistors with graphene/Ag contacts show improved electrical and photoelectrical properties, achieving a field‐effect mobility of 35 cm2 V?1 s?1, an on/off current ratio of 4 × 108, and a photoresponsivity of 2160 A W?1, compared to those of devices with conventional Ti/Au contacts. These improvements are attributed to the low work function of Ag and the tunability of graphene Fermi level; the n‐doping of Ag in graphene decreases its Fermi level, thereby reducing the Schottky barrier height and contact resistance between the MoS2 and electrodes. This demonstration of contact interface engineering with CVD‐grown MoS2 and graphene is a key step toward the practical application of atomically thin TMDC‐based devices with low‐resistance contacts for high‐performance large‐area electronics and optoelectronics.  相似文献   

12.
MoS2 nanosheet‐coated TiO2 nanobelt heterostructures—referred to as TiO2@MoS2—with a 3D hierarchical configuration are prepared via a hydrothermal reaction. The TiO2 nanobelts used as a synthetic template inhibit the growth of MoS2 crystals along the c‐axis, resulting in a few‐layer MoS2 nanosheet coating on the TiO2 nanobelts. The as‐prepared TiO2@MoS2 heterostructure shows a high photocatalytic hydrogen production even without the Pt co‐catalyst. Importantly, the TiO2@MoS2 heterostructure with 50 wt% of MoS2 exhibits the highest hydrogen production rate of 1.6 mmol h?1g?1. Moreover, such a heterostructure possesses a strong adsorption ability towards organic dyes and shows high performance in photocatalytic degradation of the dye molecules.  相似文献   

13.
Here we demonstrate the rational design and synthesis of three‐layered TiO2@carbon@MoS2 hierarchical nanotubes for anode applications in lithium‐ion batteries (LIBs). Through an efficient step‐by‐step strategy, ultrathin MoS2 nanosheets are grown on nitrogen‐doped carbon (NC) coated TiO2 nanotubes to achieve the TiO2@NC@MoS2 tubular nanostructures. This smart design can effectively shorten the diffusion length of Li+ ions, increase electric conductivity of the electrode, relax volume variation of electrode materials upon cycling, and provide more active sites for electrochemical reactions. Owing to these structural and compositional features, the hierarchical TiO2@NC@MoS2 nanotubes manifest remarkable lithium storage performance with good rate capability and long cycle life.  相似文献   

14.
A generalized scheme for the fabrication of high performance photodetectors consisting of a p‐type channel material and n‐type nanoparticles is proposed. The high performance of the proposed hybrid photodetector is achieved through enhanced photoabsorption and the photocurrent gain arising from its effective charge transfer mechanism. In this paper, the realization of this design is presented in a hybrid photodetector consisting of 2D p‐type black phosphorus (BP) and n‐type molybdenum disulfide nanoparticles (MoS2 NPs), and it is demonstrated that it exhibits enhanced photoresponsivity and detectivity compared to pristine BP photodetectors. It is found that the performance of hybrid photodetector depends on the density of NPs on BP layer and that the response time can be reduced with increasing density of MoS2 NPs. The rising and falling times of this photodetector are smaller than those of BP photodetectors without NPs. This proposed scheme is expected to work equally well for a photodetector with an n‐type channel material and p‐type nanoparticles.  相似文献   

15.
With excellent performance in the hydrogen evolution reaction (HER), molybdenum disulfide (MoS2) is considered a promising nonprecious candidate to substitute Pt‐based catalysts. Herein, pulsed laser irradiation in liquid is used to realize one‐step exfoliation of bulk 2H‐MoS2 to ultrastable few‐layer MoS2 nanosheets. Such prepared MoS2 nanosheets are rich in S vacancies and metallic 1T phase, which significantly contribute to the boosted catalytic HER activity. Protic solvents play a pivotal role in the production of S vacancies and 2H‐to‐1T phase transition under laser irradiation. MoS2 exfoliated in an optimal solvent of formic acid exhibits outstanding HER activity with an overpotential of 180 mV at 10 mA cm?2 and Tafel slope of 54 mV dec?1.  相似文献   

16.
Developing cheap, abundant, and easily available electrocatalysts to drive the hydrogen evolution reaction (HER) at small overpotentials is an urgent demand of hydrogen production from water splitting. Molybdenum disulfide (MoS2) based composites have emerged as competitive electrocatalysts for HER in recent years. Herein, nickel@nitrogen‐doped carbon@MoS2 nanosheets (Ni@NC@MoS2) hybrid sub‐microspheres are presented as HER catalyst. MoS2 nanosheets with expanded interlayer spacings are vertically grown on nickel@nitrogen‐doped carbon (Ni@NC) substrate to form Ni@NC@MoS2 hierarchical sub‐microspheres by a simple hydrothermal process. The formed Ni@NC@MoS2 composites display excellent electrocatalytic activity for HER with an onset overpotential of 18 mV, a low overpotential of 82 mV at 10 mA cm?2, a small Tafel slope of 47.5 mV dec?1, and high durability in 0.5 H2SO4 solution. The outstanding HER performance of the Ni@NC@MoS2 catalyst can be ascribed to the synergistic effect of dense catalytic sites on MoS2 nanosheets with exposed edges and expanded interlayer spacings, and the rapid electron transfer from Ni@NC substrate to MoS2 nanosheets. The excellent Ni@NC@MoS2 electrocatalyst promises potential application in practical hydrogen production, and the strategy reported here can also be extended to grow MoS2 on other nitrogen‐doped carbon encapsulated metal species for various applications.  相似文献   

17.
Core–shell structured nanohybrids are currently of significant interest due to their synergetic properties and enhanced performances. However, the restriction of lattice mismatch remains a severe obstacle for heterogrowth of various core–shells with two distinct crystal structures. Herein, a controlled synthesis of lattice‐mismatched core–shell TiO2@MoS2 nano‐onion heterostructures is successfully developed, using unilamellar Ti0.87O2 nanosheets as the starting material and the subsequent epitaxial growth of MoS2 on TiO2. The formation of these core–shell nano‐onions is attributed to an amorphous layer‐induced heterogrowth mechanism. The number of MoS2 layers can be well tuned from few to over ten layers, enabling layer‐dependent synergistic effects. The core–shell TiO2@MoS2 nano‐onion heterostructures exhibit significantly enhanced energy storage performance as lithium‐ion battery anodes. The approach has also been extended to other lattice‐mismatched systems such as TiO2@MoSe2, thus suggesting a new strategy for the growth of well‐designed lattice‐mismatched core–shell structures.  相似文献   

18.
A demonstration is presented of how significant improvements in all‐2D photodetectors can be achieved by exploiting the type‐II band alignment of vertically stacked WS2/MoS2 semiconducting heterobilayers and finite density of states of graphene electrodes. The photoresponsivity of WS2/MoS2 heterobilayer devices is increased by more than an order of magnitude compared to homobilayer devices and two orders of magnitude compared to monolayer devices of WS2 and MoS2, reaching 103 A W?1 under an illumination power density of 1.7 × 102 mW cm?2. The massive improvement in performance is due to the strong Coulomb interaction between WS2 and MoS2 layers. The efficient charge transfer at the WS2/MoS2 heterointerface and long trapping time of photogenerated charges contribute to the observed large photoconductive gain of ≈3 × 104. Laterally spaced graphene electrodes with vertically stacked 2D van der Waals heterostructures are employed for making high‐performing ultrathin photodetectors.  相似文献   

19.
Developing earth‐abundant and efficient electrocatalysts for photoelectrochemical water splitting is critical to realizing a high‐performance solar‐to‐hydrogen energy conversion process. Herein, phosphorus‐rich colloidal cobalt diphosphide nanocrystals (CoP2 NCs) are synthesized via hot injection. The CoP2 NCs show a Pt‐like hydrogen evolution reaction (HER) electrocatalytic activity in acidic solution with a small overpotential of 39 mV to achieve ?10 mA cm?2 and a very low Tafel slope of 32 mV dec?1. Density functional theory (DFT) calculations reveal that the high P content both physically separates Co atoms to prevent H from over binding to multiple Co atoms, while simultaneously stabilizing H adsorbed to single Co atoms. The catalytic performance of the CoP2 NCs is further demonstrated in a metal–insulator–semiconductor photoelectrochemical device consisting of bottom p‐Si light absorber, atomic layer deposition Al–ZnO passivation layers, and the CoP2 cocatalyst. The p‐Si/AZO/TiO2/CoP2 photocathode shows a photocurrent density of ?16.7 mA cm?2 at 0 V versus reversible hydrogen electrode (RHE) and an output photovoltage of 0.54 V. The high performance and stability are attributed to the junction between p‐Si and AZO, the corrosion‐resistance of the pinhole‐free TiO2 protective layer, and the fast HER kinetics of the CoP2 NCs.  相似文献   

20.
2D Molybdenum disulfide (MoS2) is a promising candidate material for high‐speed and flexible optoelectronic devices, but only with low photoresponsivity. Here, a large enhancement of photocurrent response is obtained by coupling few‐layer MoS2 with Au plasmonic nanostructure arrays. Au nanoparticles or nanoplates placed onto few‐layer MoS2 surface can enhance the local optical field in the MoS2 layer, due to the localized surface plasmon (LSP) resonance. After depositing 4 nm thick Au nanoparticles sparsely onto few‐layer MoS2 phototransistors, a doubled increase in the photocurrent response is observed. The photocurrent of few‐layer MoS2 phototransistors exhibits a threefold enhancement with periodic Au nanoarrays. The simulated optical field distribution confirms that light can be trapped and enhanced near the Au nanoplates. These findings offer an avenue for practical applications of high performance MoS2‐based optoelectronic devices or systems in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号