首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Searching for highly efficient bifunctional electrocatalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) using nonnoble metal‐based catalysts is essential for the development of many energy conversion systems, including rechargeable fuel cells and metal–air batteries. Here, Co9–xFexS8/Co,Fe‐N‐C hybrids wrapped by reduced graphene oxide (rGO) (abbreviated as S‐Co9–xFexS8@rGO) are synthesized through a semivulcanization and calcination method using graphene oxide (GO) wrapped bimetallic zeolite imidazolate framework (ZIF) Co,Fe‐ZIF (CoFe‐ZIF@GO) as precursors. Benefiting from the synergistic effect of OER active CoFeS and ORR active Co,Fe‐N‐C in a single component, as well as high dispersity and enhanced conductivity derived from rGO coating and Fe‐doping, the obtained S‐Co9–xFexS8@rGO‐10 catalyst shows an ultrasmall overpotential of ≈0.29 V at 10 mA cm?2 in OER and a half‐wave potential of 0.84 V in ORR, combining a superior oxygen electrode activity of ≈0.68 V in 0.1 m KOH.  相似文献   

2.
The development of rechargeable metal–air batteries and water electrolyzers are highly constrained by electrocatalysts for the oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER). However, the construction of efficient trifunctional electrocatalysts for ORR/OER/HER are highly desirable yet challenging. Herein, hollow carbon nanotubes integrated single cobalt atoms with Co9S8 nanoparticles (CoSA + Co9S8/HCNT) are fabricated by a straightforward in situ self‐sacrificing strategy. The structure of the CoSA + Co9S8/HCNT are verified by X‐ray absorption spectroscopy and aberration‐corrected scanning transmission electron microscopy. Theoretical calculations and experimental results embrace the synergistic effects between Co9S8 nanoparticles and single cobalt atoms through optimizing the electronic configuration of the CoN4 active sites to lower the reaction barrier and facilitating the ORR, OER, and HER simultaneously. Consequently, rechargeable liquid and all‐solid‐state flexible Zn–air batteries based on CoSA + Co9S8/HCNT exhibit remarkable stability and excellent power density of 177.33 and 51.85 mW cm?2, respectively, better than Pt/C + RuO2 counterparts. Moreover, the as‐fabricated Zn–air batteries can drive an overall water splitting device assembled with CoSA + Co9S8/HCNT and achieve a current density of 10 mA cm?2 at a low voltage of 1.59 V, also superior to Pt/C + RuO2. Therefore, this work presents a promising approach to an efficient trifunctional electrocatalyst toward practical applications.  相似文献   

3.
Here, ferrocene(Fc)‐incorporated cobalt sulfide (CoxSy) nanostructures directly grown on carbon nanotube (CNT) or carbon fiber (CF) networks for electrochemical oxygen evolution reaction (OER) using a facile one‐step solvothermal method are reported. The strong synergistic interaction between Fc‐CoxSy nanostructures and electrically conductive CNTs results in the superior electrocatalytic activity with a very small overpotential of ≈304 mV at 10 mA cm?2 and a low Tafel slope of 54.2 mV dec?1 in 1 m KOH electrolyte. Furthermore, the Fc‐incorporated CoxSy (FCoS) nanostructures are directly grown on the acid pretreated carbon fiber (ACF), and the resulting fabricated electrode delivers excellent OER performance with a low overpotential of ≈315 mV at 10 mA cm?2. Such superior OER catalytic activity can be attributed to 3D Fc‐CoxSy nanoarchitectures that consist of a high concentration of vertical nanosheets with uniform distribution of nanoparticles that afford a large number of active surface areas and edge sites. Besides, the tight contact interface between ACF substrate and Fc‐CoxSy nanostructures could effectively facilitate the electron transfer rate in the OER. This study provides valuable insights for the rational design of energy storage and conversion materials by the incorporation of other transition metal into metal sulfide/oxide nanostructures utilizing metallocene.  相似文献   

4.
Nitrogen and sulfur‐codoped graphene composites with Co9S8 (NS/rGO‐Co) are synthesized by facile thermal annealing of graphene oxides with cobalt nitrate and thiourea in an ammonium atmosphere. Significantly, in 0.1 m KOH aqueous solution the best sample exhibits an oxygen evolution reaction (OER) activity that is superior to that of benchmark RuO2 catalysts, an oxygen reduction reaction (ORR) activity that is comparable to that of commercial Pt/C, and an overpotential of only ?0.193 V to reach 10 mA cm?2 for hydrogen evolution reaction (HER). With this single catalyst for oxygen reversible electrocatalysis, a potential difference of only 0.700 V is observed in 0.1 m KOH solution between the half‐wave potential in ORR and the potential to reach 10 mA cm?2 in OER; in addition, an overpotential of only 450 mV is needed to reach 10 mA cm?2 for full water splitting in the same electrolyte. The present trifunctional catalytic activities are markedly better than leading results reported in recent literature, where the remarkable trifunctional activity is attributed to the synergetic effects between N,S‐codoped rGO, and Co9S8 nanoparticles. These results highlight the significance of deliberate structural engineering in the preparation of multifunctional electrocatalysts for versatile electrochemical reactions.  相似文献   

5.
Oxygen evolution reaction (OER) plays a vital role in many energy conversion and storage processes including electrochemical water splitting for the production of hydrogen and carbon dioxide reduction to value‐added chemicals. IrO2 and RuO2, known as the state‐of‐the‐art OER electrocatalysts, are severely limited by the high cost and low earth abundance of these noble metals. Developing noble‐metal‐free OER electrocatalysts with high performance has been in great demand. In this review, recent advances in the design and synthesis of noble‐metal‐free OER electrocatalysts including Ni, Co, Fe, Mn‐based hydroxides/oxyhydroxides, oxides, chalcogenides, nitrides, phosphides, and metal‐free compounds in alkaline, neutral as well as acidic electrolytes are summarized. Perspectives are also provided on the fabrication, evaluation of OER electrocatalysts and correlations between the structures of the electrocatalysts and their OER activities.  相似文献   

6.
There is an urgent demand to develop earth‐abundant electrocatalysts for efficient and durable water oxidation under mild conditions. A nickel‐substituted cobalt‐borate nanowire array is developed on carbon cloth (Ni‐Co‐Bi/CC) via oxidative polarization of NiCo2S4 nanoarray in potassium borate (K‐Bi). As a bimetallic electrocatalyst for water oxidation, such Ni‐Co‐Bi/CC is superior in catalytic activity and durability in 0.1 m K‐Bi (pH: 9.2), with a turnover frequency of 0.33 mol O2 s?1 at the overpotential of 500 mV and nearly 100% Faradaic efficiency. To drive a geometrical catalytic current density of 10 mA cm?2, it only needs overpotential of 388 mV, 34 mV less than that for Co‐Bi/CC, outperforming reported non‐noble‐metal catalysts operating under benign conditions. Notably, its activity is maintained over 80 000 s. Density functional theory calculations suggest that the O* to OOH* conversion is the rate‐determining step and Ni substitution decreases the free energy on Co‐Bi from 2.092 to 1.986 eV.  相似文献   

7.
The oxygen evolution reaction (OER) catalytic activity of a transition metal oxides/hydroxides based electrocatalyst is related to its pseudocapacitance at potentials lower than the OER standard potential. Thus, a well‐defined pseudocapacitance could be a great supplement to boost OER. Herein, a highly pseudocapacitive Ni‐Fe‐Co hydroxides/N‐doped carbon nanoplates (NiCoFe‐NC)‐based electrocatalyst is synthesized using a facile one‐pot solvothermal approach. The NiCoFe‐NC has a great pseudocapacitive performance with 1849 F g?1 specific capacitance and 31.5 Wh kg?1 energy density. This material also exhibits an excellent OER catalytic activity comparable to the benchmark RuO2 catalysts (an initiating overpotential of 160 mV and delivering 10 mA cm?2 current density at 250 mV, with a Tafel slope of 31 mV dec?1). The catalytic performance of the optimized NiCoFe‐NC catalyst could keep 24 h. X‐ray photoelectron spectroscopy, electrochemically active surface area, and other physicochemical and electrochemical analyses reveal that its great OER catalytic activity is ascribed to the Ni‐Co hydroxides with modular 2‐Dimensional layered structure, the synergistic interactions among the Fe(III) species and Ni, Co metal centers, and the improved hydrophily endowed by the incorporation of N‐doped carbon hydrogel. This work might provide a useful and general strategy to design and synthesize high‐performance metal (hydr)oxides OER electrocatalysts.  相似文献   

8.
Developing non‐noble‐metal electrocatalysts with high activity and low cost for both the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is of paramount importance for improving the generation of H2 fuel by electrocatalytic water‐splitting. This study puts forward a new N‐anion‐decorated Ni3S2 material synthesized by a simple one‐step calcination route, acting as a superior bifunctional electrocatalyst for the OER/HER for the first time. The introduction of N anions significantly modifies the morphology and electronic structure of Ni3S2, bringing high surface active sites exposure, enhanced electrical conductivity, optimal HER Gibbs free‐energy (ΔGH*), and water adsorption energy change (ΔGH2O*). Remarkably, the obtained N‐Ni3S2/NF 3D electrode exhibits extremely low overpotentials of 330 and 110 mV to reach a current density of 100 and 10 mA cm?2 for the OER and HER in 1.0 m KOH, respectively. Moreover, an overall water‐splitting device comprising this electrode delivers a current density of 10 mA cm?2 at a very low cell voltage of 1.48 V. Our finding introduces a new way to design advanced bifunctional catalysts for water splitting.  相似文献   

9.
Efficient and durable oxygen evolution reaction (OER) catalysts are highly required for the cost‐effective generation of clean energy from water splitting. For the first time, an integrated OER electrode based on one‐step direct growth of metallic iron–nickel sulfide nanosheets on FeNi alloy foils (denoted as Fe? Ni3S2/FeNi) is reported, and the origin of the enhanced OER activity is uncovered in combination with theoretical and experimental studies. The obtained Fe? Ni3S2/FeNi electrode exhibits highly catalytic activity and long‐term stability toward OER in strong alkaline solution, with a low overpotential of 282 mV at 10 mA cm?2 and a small Tafel slope of 54 mV dec?1. The excellent activity and satisfactory stability suggest that the as‐made electrode provides an attractive alternative to noble metal‐based catalysts. Combined with density functional theory calculations, exceptional OER performance of Fe? Ni3S2/FeNi results from a combination of efficient electron transfer properties, more active sites, the suitable O2 evolution kinetics and energetics benefited from Fe doping. This work not only simply constructs an excellent electrode for water oxidation, but also provides a deep understanding of the underlying nature of the enhanced OER performance, which may serve as a guide to develop highly effective and integrated OER electrodes for water splitting.  相似文献   

10.
Developing nonprecious oxygen evolution electrocatalysts that can work well at large current densities is of primary importance in a viable water‐splitting technology. Herein, a facile ultrafast (5 s) synthetic approach is reported that produces a novel, efficient, non‐noble metal oxygen‐evolution nano‐electrocatalyst that is composed of amorphous Ni–Fe bimetallic hydroxide film‐coated, nickel foam (NF)‐supported, Ni3S2 nanosheet arrays. The composite nanomaterial (denoted as Ni‐Fe‐OH@Ni3S2/NF) shows highly efficient electrocatalytic activity toward oxygen evolution reaction (OER) at large current densities, even in the order of 1000 mA cm?2. Ni‐Fe‐OH@Ni3S2/NF also gives an excellent catalytic stability toward OER both in 1 m KOH solution and in 30 wt% KOH solution. Further experimental results indicate that the effective integration of high catalytic reactivity, high structural stability, and high electronic conductivity into a single material system makes Ni‐Fe‐OH@Ni3S2/NF a remarkable catalytic ability for OER at large current densities.  相似文献   

11.
Rational design of high active and robust nonprecious metal catalysts with excellent catalytic efficiency in oxygen evolution reaction (OER) is extremely vital for making the water splitting process more energy efficient and economical. Among these noble metal‐free catalysts, transition‐metal‐based nanomaterials are considered as one of the most promising OER catalysts due to their relatively low‐cost intrinsic activities, high abundance, and diversity in terms of structure and morphology. Herein, a facile sugar‐blowing technique and low‐temperature phosphorization are reported to generate 3D self‐supported metal involved carbon nanostructures, which are termed as Co2P@Co/nitrogen‐doped carbon (Co2P@Co/N‐C). By capitalizing on the 3D porous nanostructures with high surface area, homogeneously dispersed active sites, the intimate interaction between active sites, and 3D N‐doped carbon, the resultant Co2P@Co/N‐C exhibits satisfying OER performance superior to CoO@Co/N‐C, delivering 10 mA cm?2 at overpotential of 0.32 V. It is worth noting that in contrast to the substantial current density loss of RuO2, Co2P@Co/N‐C shows much enhanced catalytic activity during the stability test and a 1.8‐fold increase in current density is observed after stability test. Furthermore, the obtained Co2P@Co/N‐C can also be served as an excellent nonprecious metal catalyst for methanol and glucose electrooxidation in alkaline media, further extending their potential applications.  相似文献   

12.
Transition metal oxides have recently received great attention for application in advanced lithium‐ion batteries (LIBs) and oxygen evolution reaction (OER). Herein, the ethylenediaminetetraacetic cobalt complex as a precursor to synthesize ultrafine Co3O4 nanoparticles encapsulated into a nitrogen‐doped carbon matrix (NC) composites is presented. The as‐prepared Co3O4/NC‐350 obtained by pyrolysis at 350 °C demonstrates superior rate performance (372 mAh g?1 at 5.0 A g?1) and high cycling stability (92% capacity retention after 300 cycles at 1.0 A g?1) as anode for LIBs. When evaluated as an electrocatalyst for OER, the Co3O4/NC‐350 achieves an overpotential of 298 mV at a current density of 10 mA cm?2. The NC‐encapsualted porous hierarchical structure assures fast and continuous electron transportation, high activity sites, and strong structural integrity. This works offers novel complex precursors for synthesizing transition metal–based electrodes for boosting electrochemical energy conversion and storage.  相似文献   

13.
Development of effective oxygen evolution reaction (OER) electrocatalysts has been intensively studied to improve water splitting efficiency and cost effectiveness in the last ten years. However, it is a big challenge to obtain highly efficient and durable OER electrocatalysts with overpotentials below 200 mV at 10 mA cm?2 despite the efforts made to date. In this work, the successful synthesis of supersmall α‐Ni(OH)2 is reported through electro‐oxidation of NiSe2 loaded onto carbon nanoarrays. The obtained α‐Ni(OH)2 shows excellent activity and long‐term stability for OER, with an overpotential of only 190 mV at the current density of 10 mA cm?2, which represents a highly efficient OER electrocatalyst. The excellent activity could be ascribed to the large electrochemical surface area provided by the carbon nanoarray, as well as the supersmall size (≈10 nm) of α‐Ni(OH)2 which possess a large number of active sites for the reaction. In addition, the phase evolution of α‐Ni(OH)2 from NiSe2 during the electro‐oxidation process was monitored with in situ X‐ray absorption fine structure (XAFS) analysis.  相似文献   

14.
Carbides are commonly regarded as efficient hydrogen evolution reaction (HER) catalysts, but their poor oxygen evolution reaction (OER) catalytic activities seriously limit their practical application in overall water splitting. Here, vertically aligned porous cobalt tungsten carbide nanosheet embedded in N‐doped carbon matrix (Co6W6C@NC) is successfully constructed on flexible carbon cloth (CC) as an efficient bifunctional electrocatalyst for overall water splitting via a facile metal–organic framework (MOF) derived method. The synergistic effect of Co and W atoms effectively tailors the electron state of carbide, optimizing the hydrogen‐binding energy. Thus Co6W6C@NC shows an enhanced HER performance with an overpotential of 59 mV at a current density of ?10 mA cm?2. Besides, Co6W6C@NC easily in situ transforms into tungsten actived cobalt oxide/hydroxide during the OER process, serving as OER active species, which provides an excellent OER activity with an overpotential of 286 mV at a current density of ?10 mA cm?2. The water splitting device, by applying Co6W6C@NC as both the cathode and anode, requires a low cell voltage of 1.585 V at 10 mA cm?2 with the great stability in alkaline solution. This work provides a feasible strategy to fabricate bimetallic carbides and explores their possibility as bifunctional catalysts toward overall water splitting.  相似文献   

15.
Exploring highly efficient and stable oxygen evolution reaction (OER) electrocatalysts such as transition‐metal phosphides (TMPs) is critical to advancing renewable hydrogen fuel. TMP nanostructures typically involving binary or ternary TMPs tuned by cation or anion doping are suggested to be promising low‐cost and durable OER catalysts. Herein, the preparation of CoP/CoP2 composite nanoparticles encapsulated within N,P‐doped carbon nanotubes (CoP/CoP2@NPCNTs) is demonstrated as a synergistic electrocatalyst for OER via the calcination of a CoAl‐layered double hydroxide/melamine mixture and subsequent phosphorization. Facile visualization by scanning electron microscopy in conjunction with electron backscatter diffraction demonstrates the encapsulation of the CoP/CoP2 nanoparticles within the N,P‐codoped CNTs. Electrocatalytic evaluation shows that the composite electrode requires a low overpotential of 300 mV for the OER at 10 mA cm?2 in a 1.0 m KOH solution and, in particular, exhibits an excellent long‐term durability of ≈100 h, which is superior to that of the state‐of‐the‐art RuO2 electrocatalyst. Density functional theory calculations reveal that the synergistic effect of CoP and CoP2 can enhance the electrocatalytic performance. In addition, molecular dynamics simulations demonstrate that the generated O2 molecules can readily diffuse out of the CNTs. Both the effects give rise to the observed OER enhancement.  相似文献   

16.
The development of highly efficient and durable non‐noble metal electrocatalysts for the hydrogen evolution reaction (HER) is significant for clean and renewable energy research. This work reports the synthesis of N‐doped graphene nanosheets supported N‐doped carbon coated cobalt phosphide (CoP) nanoparticles via a pyrolysis and a subsequent phosphating process by using polyaniline. The obtained electrocatalyst exhibits excellent electrochemical activity for HER with a small overpotential of ?135 mV at 10 mA cm?2 and a low Tafel slope of 59.3 mV dec?1 in 0.5 m H2SO4. Additionally, the encapsulation of N‐doped carbon shell prevents CoP nanoparticles from corrosion, exhibiting good stability after 14 h operation. Moreover, the as‐prepared electrocatalyst also shows outstanding activity and stability in basic and neutral electrolytes.  相似文献   

17.
The development of active and durable bifunctional electrocatalysts for overall water splitting is mandatory for renewable energy conversion. This study reports a general method for controllable synthesis of a class of IrM (M = Co, Ni, CoNi) multimetallic porous hollow nanocrystals (PHNCs), through etching Ir‐based, multimetallic, solid nanocrystals using Fe3+ ions, as catalysts for boosting overall water splitting. The Ir‐based multimetallic PHNCs show transition‐metal‐dependent bifunctional electrocatalytic activities for both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in acidic electrolyte, with IrCo and IrCoNi PHNCs being the best for HER and OER, respectively. First‐principles calculations reveal a ligand effect, induced by alloying Ir with 3d transition metals, can weaken the adsorption energy of oxygen intermediates, which is the key to realizing much‐enhanced OER activity. The IrCoNi PHNCs are highly efficient in overall‐water‐splitting catalysis by showing a low cell voltage of only 1.56 V at a current density of 2 mA cm?2, and only 8 mV of polarization‐curve shift after a 1000‐cycle durability test in 0.5 m H2SO4 solution. This work highlights a potentially powerful strategy toward the general synthesis of novel, multimetallic, PHNCs as highly active and durable bifunctional electrocatalysts for high‐performance electrochemical overall‐water‐splitting devices.  相似文献   

18.
An earth‐abundant and highly efficient electrocatalyst is essential for oxygen evolution reaction (OER) due to its poor kinetics. Layered double hydroxide (LDH)‐based nanomaterials are considered as promising electrocatalysts for OER. However, the stacking structure of LDHs limits the exposure of the active sites. Therefore, the exfoliation is necessary to expose more active sites. In addition, the defect engineering is proved to be an efficient strategy to enhance the performance of OER electrocatalysts. For the first time, this study prepares ultrathin CoFe LDHs nanosheets with multivacancies as OER electrocatalysts by water‐plasma‐enabled exfoliation. The water plasma can destroy the electrostatic interactions between the host metal layers and the interlayer cations, resulting in the fast exfoliation. On the other hand, the etching effect of plasma can simultaneously and effectively produce multivacancies in the as‐exfoliated ultrathin LDHs nanosheets. The increased active sites and the multivacancies significantly contribute to the enhanced electrocatalytic activity for OER. Compared to pristine CoFe LDHs, the as‐exfoliated ultrathin CoFe LDHs nanosheets exhibit excellent catalytic activity for OER with a ultralow overpotential of only 232 mV at 10 mA cm?2 and possesses outstanding kinetics (the Tafel slope of 36 mV dec?1). This work provides a novel strategy to exfoliate LDHs and to produce multivacancies simultaneously as highly efficient electrocatalysts for OER.  相似文献   

19.
Metal oxides of earth‐abundant elements are promising electrocatalysts to overcome the sluggish oxygen evolution and oxygen reduction reaction (OER/ORR) in many electrochemical energy‐conversion devices. However, it is difficult to control their catalytic activity precisely. Here, a general three‐stage synthesis strategy is described to produce a family of hybrid materials comprising amorphous bimetallic oxide nanoparticles anchored on N‐doped reduced graphene oxide with simultaneous control of nanoparticle elemental composition, size, and crystallinity. Amorphous Fe0.5Co0.5Ox is obtained from Prussian blue analog nanocrystals, showing excellent OER activity with a Tafel slope of 30.1 mV dec?1 and an overpotential of 257 mV for 10 mA cm?2 and superior ORR activity with a large limiting current density of ?5.25 mA cm?2 at 0.6 V. A fabricated Zn–air battery delivers a specific capacity of 756 mA h gZn?1 (corresponding to an energy density of 904 W h kgZn?1), a peak power density of 86 mW cm?2 and can be cycled over 120 h at 10 mA cm?2. Other two amorphous bimetallic, Ni0.4Fe0.6Ox and Ni0.33Co0.67Ox , are also produced to demonstrate the general applicability of this method for synthesizing binary metal oxides with controllable structures as electrocatalysts for energy conversion.  相似文献   

20.
Highly efficient and stable electrocatalysts, particularly those that are capable of multifunctionality in the same electrolyte, are in high demand for the hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and oxygen reduction reaction (ORR). In this work, highly monodisperse CoP and Co2P nanocrystals (NCs) are synthesized using a robust solution‐phase method. The highly exposed (211) crystal plane and abundant surface phosphide atoms make the CoP NCs efficient catalysts toward ORR and HER, while metal‐rich Co2P NCs show higher OER performance owing to easier formation of plentiful Co2P@COOH heterojunctions. Density functional theory calculation results indicate that the desorption of OH* from cobalt sites is the rate‐limiting step for both CoP and Co2P in ORR and that the high content of phosphide can lower the reaction barrier. A water electrolyzer constructed with a CoP NC cathode and a Co2P NC anode can achieve a current density of 10 mA cm?2 at 1.56 V, comparable even to the noble metal‐based Pt/C and RuO2/C pair. Furthermore, the CoP NCs are employed as an air cathode in a primary zinc–air battery, exhibiting a high power density of 62 mW cm?2 and good stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号