首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Doping atomically thick nanosheets is a great challenge due to the self‐purification effect that drives the precipitation of dopants. Here, a breakthrough is made to dope Mn atoms substitutionally into MoS2 nanosheets in a sulfur‐rich supercritical hydrothermal reaction environment, where the formation energy of Mn substituting for Mo sites in MoS2 is significantly reduced to overcome the self‐purification effect. The substitutional Mn doping is convincingly evidenced by high‐angle annular dark‐field scanning transmission electron microscopy and X‐ray absorption fine spectroscopy characterizations. The Mn‐doped MoS2 nanosheets show robust intrinsic ferromagnetic response with a saturation magnetic moment of 0.05 µ B Mn?1 at room temperature. The intrinsic ferromagnetism is further confirmed by the reversibility of the magnetic behavior during the cycle of incorporating/removing Li codopants, showing the critical role of Mn 3d electronic states in mediating the magnetic interactions in MoS2 nanosheets.  相似文献   

3.
4.
Despite recent efforts for the development of transition‐metal‐dichalcogenide‐based high‐performance thin‐film transistors, device performance has not improved much, mainly because of the high contact resistance at the interface between the 2D semiconductor and the metal electrode. Edge contact has been proposed for the fabrication of a high‐quality electrical contact; however, the complete electronic properties for the contact resistance have not been elucidated in detail. Using the scanning tunneling microscopy/spectroscopy and scanning transmission electron microscopy techniques, the edge contact, as well as the lateral boundary between the 2D semiconducting layer and the metalized interfacial layer, are investigated, and their electronic properties and the energy band profile across the boundary are shown. The results demonstrate a possible mechanism for the formation of an ohmic contact in homojunctions of the transition‐metal dichalcogenides semiconductor–metal layers and suggest a new device scheme utilizing the low‐resistance edge contact.  相似文献   

5.
6.
Substantial efforts are underway to develop all‐solid‐state Li batteries (SSLiBs) toward high safety, high power density, and high energy density. Garnet‐structured solid‐state electrolyte exhibits great promise for SSLiBs owing to its high Li‐ion conductivity, wide potential window, and sufficient thermal/chemical stability. A major challenge of garnet is that the contact between the garnet and the Li‐metal anodes is poor due to the rigidity of the garnet, which leads to limited active sites and large interfacial resistance. This study proposes a new methodology for reducing the garnet/Li‐metal interfacial resistance by depositing a thin germanium (Ge) (20 nm) layer on garnet. By applying this approach, the garnet/Li‐metal interfacial resistance decreases from ≈900 to ≈115 Ω cm2 due to an alloying reaction between the Li metal and the Ge. In agreement with experiments, first‐principles calculation confirms the good stability and improved wetting at the interface between the lithiated Ge layer and garnet. In this way, this unique Ge modification technique enables a stable cycling performance of a full cell of lithium metal, garnet electrolyte, and LiFePO4 cathode at room temperature.  相似文献   

7.
8.
9.
New light is shed on the previously known perovskite material, Cs2Au2I6, as a potential active material for high‐efficiency thin‐film Pb‐free photovoltaic cells. First‐principles calculations demonstrate that Cs2Au2I6 has an optimal band gap that is close to the Shockley–Queisser value. The band gap size is governed by intermediate band formation. Charge disproportionation on Au makes Cs2Au2I6 a double‐perovskite material, although it is stoichiometrically a single perovskite. In contrast to most previously discussed double perovskites, Cs2Au2I6 has a direct‐band‐gap feature, and optical simulation predicts that a very thin layer of active material is sufficient to achieve a high photoconversion efficiency using a polycrystalline film layer. The already confirmed synthesizability of this material, coupled with the state‐of‐the‐art multiscale simulations connecting from the material to the device, strongly suggests that Cs2Au2I6 will serve as the active material in highly efficient, nontoxic, and thin‐film perovskite solar cells in the very near future.  相似文献   

10.
Molybdenum disulfide (MoS2) is a promising electrode material for electrochemical energy storage owing to its high theoretical specific capacity and fascinating 2D layered structure. However, its sluggish kinetics for ionic diffusion and charge transfer limits its practical applications. Here, a promising strategy is reported for enhancing the Na+‐ion charge storage kinetics of MoS2 for supercapacitors. In this strategy, electrical conductivity is enhanced and the diffusion barrier of Na+ ion is lowered by a facile phosphorus‐doping treatment. Density functional theory results reveal that the lowest energy barrier of dilute Na‐vacancy diffusion on P‐doped MoS2 (0.11 eV) is considerably lower than that on pure MoS2 (0.19 eV), thereby signifying a prominent rate performance at high Na intercalation stages upon P‐doping. Moreover, the Na‐vacancy diffusion coefficient of the P‐doped MoS2 at room temperatures can be enhanced substantially by approximately two orders of magnitude (10?6–10?4 cm2 s?1) compared with pure MoS2. Finally, the quasi‐solid‐state asymmetrical supercapacitor assembled with P‐doped MoS2 and MnO2, as the positive and negative electrode materials, respectively, exhibits an ultrahigh energy density of 67.4 W h kg?1 at 850 W kg?1 and excellent cycling stability with 93.4% capacitance retention after 5000 cycles at 8 A g?1.  相似文献   

11.
Migration of dislocations not only determines the durability of large‐scale nanoelectronic and opto‐electronic devices based on polycrystalline 2D transition‐metal dichalcogenides (TMDCs), but also plays an important role in enhancing the performance of novel memristors. However, a fundamental question of the migration dependence on the electronic effects, which are inevitable in practical field‐effect transistors based on 2D TMDCs, and its interplay with different dislocations, remains unexplored. Here, taking WS2 as an example, first‐principle calculations are used to show that the electronic contributions arising from defect states can greatly influence the migration barriers of dislocations. The barrier height can be reduced by as much as 50%, which is mainly attributed to the change in electronic occupation and the band energy of defect levels controlled by electronic chemical potential (Fermi level). The reduced barriers in turn lead to significantly enhanced migration, and thus the plasticity. Since defect levels from dislocations locate deep inside the bandgap, the doping‐induced tuning of barrier height can be achieved at relatively low doping concentration through either chemical doping or electrode gating. The effective electromechanical coupling in 2D TMDCs can provide new opportunities in material engineering for various potential applications.  相似文献   

12.
Due to the superior thickness‐dependent properties, 2D materials have exhibited great potential for applications in next‐generation optoelectronic devices. Despite the significant progress that has been achieved, the synthesis of 2D AlN remains challenging. This work reports on the epitaxial growth of 2D AlN layers via utilizing physically transferred graphene on Si substrates by metal–organic chemical vapor deposition. The 2D AlN layers sandwiched between graphene and Si substrates are confirmed by annular bright‐field scanning transmission electron microscopy and the effect of hydrogenation on the formation of 2D AlN layers is clarified by theoretical calculations with first‐principles calculations based on density functional theory. Moreover, the bandgap of as‐grown 2D AlN layers is theoretically predicted to be ≈9.63 eV and is experimentally determined to be 9.20–9.60 eV. This ultrawide bandgap semiconductor shows great promise in deep‐ultraviolet optoelectronic applications. These results are expected to support innovative and front‐end development of optoelectronic devices.  相似文献   

13.
14.
2D anisotropic Dirac cones are observed in χ3 borophene, a monolayer boron sheet, using high‐resolution angle‐resolved photoemission spectroscopy. The Dirac cones are centered at the X and X′ points. The data also reveal that the hybridization between borophene and Ag(111) is very weak, which explains the preservation of the Dirac cones. As χ3 borophene has been predicated to be a superconductor, the results may stimulate further research interest in the novel physics of borophene, such as the interplay between Cooper pairs and the massless Dirac fermions.  相似文献   

15.
Using first‐principles local and hybrid density functional theoretical calculations, a thickness‐dependent electronic structure of layered GaS is determined, and it is shown that 2D GaS has an electronic structure with valence and conduction bands that straddle the redox potentials of hydrogen evolution reaction and oxygen evolution reaction up to a critical thickness (<5.5 nm). Here, simulations of adsorption of H2O on nanoscale GaS reveal that localized electronic states at its edges appear in the gap and strengthen the interaction with H2O, further activating the surface atomic sites. It is thus predicted that GaS synthesized with a controlled thickness and preferred edges may be an efficient catalyst for photocatalytic splitting of water. Experiments that verify some of the predictions in this study are presented, and it is shown that GaS is effective in absorption of light and evolution of H2 (887 μmol h−1 g−1) in the presence of aqueous solution of hydrazine (1% v/v). This study should open up the use of nanoscale GaS in conversion of solar energy into environment‐friendly chemical energy in the form of hydrogen.  相似文献   

16.
Surface modification or decoration of ultrathin MoS2 films with chemical moieties is appealing since nanointerfacing can functionalize MoS2 films with bonus potentials. In this work, a facile and effective method for microlandscaping of Au nanoparticles (NPs) on few‐layer MoS2 films is developed. This approach first employs a focused laser beam to premodify the MoS2 films to achieve active surface domains with unbound sulfur. When the activated surface is subsequently immersed in AuCl3 solution, Au NPs are found to preferentially decorate onto the modified regions. As a result, Au NPs can be selectively and locally anchored onto designated regions on the MoS2 surface. With a scanning laser beam, microlandscapes comprising of Au NPs decorated on laser‐defined micropatterns are constructed. By varying the laser power, reaction time and thickness of the MoS2 films, the size and density of the NPs can be controlled. The resulting hybrid materials are demonstrated as efficient Raman active surfaces for the detection of aromatic molecules with high sensitivity.  相似文献   

17.
2D MoS2 nanostructures have recently attracted considerable attention because of their outstanding electrocatalytic properties. The synthesis of unique Co–Ru–MoS2 hybrid nanosheets with excellent catalytic activity toward overall water splitting in alkaline solution is reported. 1T′ phase MoS2 nanosheets are doped homogeneously with Co atoms and decorated with Ru nanoparticles. The catalytic performance of hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is characterized by low overpotentials of 52 and 308 mV at 10 mA cm?2 and Tafel slopes of 55 and 50 mV decade?1 in 1.0 m KOH, respectively. Analysis of X‐ray photoelectron and absorption spectra of the catalysts show that the MoS2 well retained its metallic 1T′ phase, which guarantees good electrical conductivity during the reaction. The Gibbs free energy calculation for the reaction pathway in alkaline electrolyte confirms that the Ru nanoparticles on the Co‐doped MoS2 greatly enhance the HER activity. Water adsorption and dissociation take place favorably on the Ru, and the doped Co further catalyzes HER by making the reaction intermediates more favorable. The high OER performance is attributed to the catalytically active RuO2 nanoparticles that are produced via oxidation of Ru nanoparticles.  相似文献   

18.
Using first‐principles calculations combined with scanning tunneling microscopy experiments, we investigated the adsorption configurations, electronic structures and the corresponding growth mechanism of several transition metal (TM) atoms (Pt, Ru, Ir, Ti, Pd, Au, Ag, and Cu) on a graphene/Ru(0001) moiré template (G/Ru(0001)) at low coverage. We find that Pt, Ru, Ir, and Ti selectively adsorb on the fcc region of G/Ru(0001) and form ordered dispersed metal nanoclusters. This behavior is due to the unoccupied d orbital of the TM atoms and the strong sp3 hybridization of carbon atoms in the fcc region of G/Ru(0001). Pd, Au, Ag, and Cu form nonselective structures because of the fully occupied d orbital. This mechanism can be extended to metals on a graphene/Rh(111) template. By using Pt as an example, we provide a layer by layer growth path for Pt nanoclusters in the fcc region of the G/Ru(0001). The simulations of growth mechanism agree well with the experimental observations. Moreover, they also provide guidance for the selection of suitable metal atoms to form ordered dispersed metal nanoclusters on similar templates.  相似文献   

19.
Tungsten ditelluride (WTe2) is a semimetal with orthorhombic Td phase that possesses some unique properties such as Weyl semimetal states, pressure‐induced superconductivity, and giant magnetoresistance. Here, the high‐pressure properties of WTe2 single crystals are investigated by Raman microspectroscopy and ab initio calculations. WTe2 shows strong plane‐parallel/plane‐vertical vibrational anisotropy, stemming from its intrinsic Raman tensor. Under pressure, the Raman peaks at ≈120 cm?1 exhibit redshift, indicating structural instability of the orthorhombic Td phase. WTe2 undergoes a phase transition to a monoclinic T′ phase at 8 GPa, where the Weyl states vanish in the new T′ phase due to the presence of inversion symmetry. Such Td to T′ phase transition provides a feasible method to achieve Weyl state switching in a single material without doping. The new T′ phase also coincides with the appearance of superconductivity reported in the literature.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号