首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human beings have developed many dyes and pigments and use them for printed and display materials to share information. Today's information society is not possible without these color materials. Some living organisms utilize body color for information exchange and protection by skilfully combining dye, structural, and background colors to realize a body color change based on circumstances. In this study, inspired by the extraordinary body color changes of living things, a composite color material combining photochromic dyes, a black substance, a spherical colloidal crystal exhibiting a structural color, and a background color is prepared. In addition to combining a dye color and a structural color that changes upon light irradiation, the contribution of the different effects of the background color on each coloring property allows the construction of a color material that can reversibly change into various colors under different conditions.  相似文献   

2.
3.
4.
5.
6.
7.
8.
9.
10.
Structurally colored materials are often used for their resistance to photobleaching and their complex viewing‐direction‐dependent optical properties. Frequently, absorption has been added to these types of materials in order to improve the color saturation by mitigating the effects of nonspecific scattering that is present in most samples due to imperfect manufacturing procedures. The combination of absorbing elements and structural coloration often yields emergent optical properties. Here, a new hybrid architecture is introduced that leads to an interesting, highly directional optical effect. By localizing absorption in a thin layer within a transparent, structurally colored multilayer material, an optical Janus effect is created, wherein the observed reflected color is different on one side of the sample than on the other. A systematic characterization of the optical properties of these structures as a function of their geometry and composition is performed. The experimental studies are coupled with a theoretical analysis that enables a precise, rational design of various optical Janus structures with highly controlled color, pattern, and fabrication approaches. These asymmetrically colored materials will open applications in art, architecture, semitransparent solar cells, and security features in anticounterfeiting materials.  相似文献   

11.
结合颜色和结构信息的粒子滤波跟踪算法   总被引:3,自引:1,他引:2  
单纯依靠颜色信息往往使得目标跟踪不稳定.为了在复杂背景和光照变化等干扰情况下,能够准确地跟踪到感兴趣的目标,本文提出了将颜色和结构信息相结合的方法.该方法在基于颜色直方图的粒子滤波跟踪框架中,利用目标的灰度图像建立结构模型,通过结构相似性质量因子衡量目标在两帧图像之间的相似性.实验表明,该算法在使用相同粒子数目的情况下较传统的基于颜色直方图的粒子滤波跟踪算法鲁棒性更高,可以用于特定场合可疑目标的跟踪.  相似文献   

12.
13.
14.
15.
16.
17.
18.
The synthesis and assembly of monodispersed colloidal spheres are currently the subject of extensive investigation to fabricate artificial structural color materials. However, artificial structural colors from general colloidal crystals still suffer from the low color visibility and strong viewing angle dependence which seriously hinder their practical application in paints, colorimetric sensors, and color displays. Herein, monodispersed polysulfide (PSF) spheres with intrinsic high refractive index (as high as 1.858) and light‐absorbing characteristics are designed, synthesized through a facile polycondensation and crosslinking process between sodium disulfide and 1,2,3‐trichloropropane. Owing to their high monodispersity, sufficient surface charge, and good dispersion stability, the PSF spheres can be assembled into large‐scale and high‐quality 3D photonic crystals. More importantly, high structural color visibility and broad viewing angle are easily achieved because the unique features of PSF can remarkably enhance the relative reflectivity and eliminate the disturbance of scattering and background light. The results of this study provide a simple and efficient strategy to create structural colors with high color visibility, which is very important for their practical application.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号