首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Development of high-performance carbon dots (CDs) with emission wavelength longer than 660 nm (deep red emission) is critical in deep-tissue bioimaging, yet it is still a major challenge to obtain CDs with both narrow full width at half maximum (FWHM) and high deep red/near-infrared emission yield. Here, deep red emissive carbonized polymer dots (CPDs) with unprecedented FWHM of 20 nm are synthesized. The purified CPDs in dimethyl sulfoxide (DMSO) solution possess quantum yield (QY) as high as 59% under 413 nm excitation, as well as recorded QY of 31% under 660 nm excitation in the deep red fluorescent window. Detailed characterizations identify that CPDs have unique polymer characteristics, consisting of carbon cores and the shells of polymer chains, and π conjugated system formed with N heterocycles and aromatic rings governs the single photoluminescence (PL) center, which is responsible for high QY in deep red emissive CPDs with narrow FWHM. The CPDs exhibit strong absorption and emission in the deep red light region, low toxicity, and good biocompatibility, making them an efficient probe for both one-photon and two-photon bioimaging. CPDs are rapidly excreted via the kidney system and hepatobiliary system.  相似文献   

2.
Robust luminescent dyes with efficient two‐photon fluorescence are highly desirable for biological imaging applications, but those suitable for organic dots fabrication are still rare because of aggregation‐caused quenching. In this work, a red fluorescent silole, 2,5‐bis[5‐(dimesitylboranyl)thiophen‐2‐yl]‐1‐methyl‐1,3,4‐triphenylsilole ((MesB)2DTTPS), is synthesized and characterized. (MesB)2DTTPS exhibits enhanced fluorescence efficiency in nanoaggregates, indicative of aggregation‐enhanced emission (AEE). The organic dots fabricated by encapsulating (MesB)2DTTPS within lipid‐PEG show red fluorescence peaking at 598 nm and a high fluorescence quantum yield of 32%. Upon excitation at 820 nm, the dots show a large two‐photon absorption cross section of 3.43 × 105 GM, which yields a two‐photon action cross section of 1.09 × 105 GM. These (MesB)2DTTPS dots show good biocompatibility and are successfully applied to one‐photon and two‐photon fluorescence imaging of MCF‐7 cells and two‐photon in vivo visualization of the blood vascular of mouse muscle in a high‐contrast and noninvasive manner. Moreover, the 3D blood vasculature located at the mouse ear skin with a depth of over 100 μm can also be visualized clearly, providing the spatiotemporal information about the whole blood vascular network.  相似文献   

3.
Precise diagnostics are of significant importance to the optimal treatment outcomes of patients bearing brain tumors. NIR‐II fluorescence imaging holds great promise for brain‐tumor diagnostics with deep penetration and high sensitivity. This requires the development of organic NIR‐II fluorescent agents with high quantum yield (QY), which is difficult to achieve. Herein, the design and synthesis of a new NIR‐II fluorescent molecule with aggregation‐induced‐emission (AIE) characteristics is reported for orthotopic brain‐tumor imaging. Encapsulation of the molecule in a polymer matrix yields AIE dots showing a very high QY of 6.2% with a large absorptivity of 10.2 L g?1 cm?1 at 740 nm and an emission maximum near 1000 nm. Further decoration of the AIE dots with c‐RGD yields targeted AIE dots, which afford specific and selective tumor uptake, with a high signal/background ratio of 4.4 and resolution up to 38 µm. The large NIR absorptivity of the AIE dots facilitates NIR‐I photoacoustic imaging with intrinsically deeper penetration than NIR‐II fluorescence imaging and, more importantly, precise tumor‐depth detection through intact scalp and skull. This research demonstrates the promise of NIR‐II AIE molecules and their dots in dual NIR‐II fluorescence and NIR‐I photoacoustic imaging for precise brain cancer diagnostics.  相似文献   

4.
As novel fluorescent nanomaterials, carbon dots (CDs) exhibit excellent photostability, good biocompatibility, and high quantum yield (QY). Their superior properties make them promising candidates for biomedical assays and therapy. Among them, the red‐emission (>600 nm) CDs have attracted increasing attention in the past years due to their little damage to the biological matrix, deep tissue penetration, and minimum autofluorescence background of biosamples. This Review, summarizes the recent progress of far‐red to near‐infrared (NIR) CDs from the preparation and their biological applications. The challenges in designing far‐red and NIR CDs and their further applications in biomedical fields are also discussed.  相似文献   

5.
Stable solid‐state red fluorescence from organosilane‐functionalized carbon dots (CDs) with sizes around 3 nm is reported for the first time. Meanwhile, a novel method is also first reported for the efficient construction of dual‐fluorescence morphologies. The quantum yield of these solid‐state CDs and their aqueous solution is 9.60 and 50.7%, respectively. The fluorescence lifetime is 4.82 ns for solid‐state CDs, and 15.57 ns for their aqueous solution. These CDs are detailedly studied how they can exhibit obvious photoluminescence overcoming the self‐quenching in solid state. Luminescent materials are constructed with dual fluorescence based on as‐prepared single emissive CDs (red emission) and nonfluorescence media (starch, Al2O3, and RnOCH3COONa), with the characteristic peaks located at nearly 440 and 600 nm. Tunable photoluminescence can be successfully achieved by tuning the mass ratio of CDs to solid matrix (such as starch). These constructed dual‐fluorescence CDs/starch composites can also be applied in white light‐emitting diodes with UV chips (395 nm), and oxygen sensing.  相似文献   

6.
Carbon dots (CDs) have tremendous potential applications in bioimaging, biomedicine, and optoelectronics. By far, it is still difficult to produce photoluminescence (PL) tunable CDs with high quantum yield (QY) across the entire visible spectrum and narrow the emission peak widths of CDs close to those of typical quantum dots. In this work, a series of CDs with tunable emission from 443 to 745 nm, quantum yield within 13–54%, and narrowed full width at half maximum (FWHM) from 108 to 55 nm, are obtained by only adjusting the reaction solvents in a one‐pot solvothermal route. The distinct optical features of these CDs are based on their differences in the particle size, and the content of graphitic nitrogen and oxygen‐containing functional groups, which can be modulated by controlling the dehydration and carbonization processes during solvothermal reactions. Blue, green, yellow, red, and even pure white light emitting films (Commission Internationale de L'Eclairage (CIE)= 0.33, 0.33, QY = 39%) are prepared by dispersing one or three kinds of CDs into polyvinyl alcohol with appropriate ratios. The near‐infrared emissive CDs are excellent fluorescent probes for both in vitro and in vivo bioimaging because of their high QY in water, long‐term stability, and low cytotoxicity.  相似文献   

7.
Intravital fluorescence imaging of vasculature morphology and dynamics in the brain and in tumors with large penetration depth and high signal‐to‐background ratio (SBR) is highly desirable for the study and theranostics of vascular‐related diseases and cancers. Herein, a highly bright fluorophore (BTPETQ) with long‐wavelength absorption and aggregation‐induced near‐infrared (NIR) emission (maximum at ≈700 nm) is designed for intravital two‐photon fluorescence (2PF) imaging of a mouse brain and tumor vasculatures under NIR‐II light (1200 nm) excitation. BTPETQ dots fabricated via nanoprecipitation show uniform size of around 42 nm and a high quantum yield of 19 ± 1% in aqueous media. The 2PF imaging of the mouse brain vasculatures labeled by BTPETQ dots reveals a 3D blood vessel network with an ultradeep depth of 924 µm. In addition, BTPETQ dots show enhanced 2PF in tumor vasculatures due to their unique leaky structures, which facilitates the differentiation of normal blood vessels from tumor vessels with high SBR in deep tumor tissues. Moreover, the extravasation and accumulation of BTPETQ dots in deep tumor (more than 900 µm) is visualized under NIR‐II excitation. This study highlights the importance of developing NIR‐II light excitable efficient NIR fluorophores for in vivo deep tissue and high contrast tumor imaging.  相似文献   

8.
A highly emissive far‐red/near‐infrared (FR/NIR) fluorescent conjugated polymer (CP), poly[(9,9‐dihexylfluorene)‐co‐2,1,3‐benzothiadiazole‐co‐4,7‐di(thiophen‐2‐yl)‐2,1,3‐benzothiadiazole] (PFBTDBT10) is designed and synthesized via Suzuki polymerization. Formulation of PFBTDBT10 using 1,2‐distearoyl‐sn‐glycero‐3‐phosphoethanolamine‐N‐[methoxy(polyethylene glycol)‐2000] (DSPE‐PEG2000) and DSPE‐PEG5000‐folate as the encapsulation matrix yielded CP‐loaded DSPE‐PEG‐folic acid nanoparticles (CPDP‐FA NPs) with bright FR/NIR fluorescence (27% quantum yield) and a large Stoke's shift of 233 nm in aqueous solution. CPDP‐FA NPs show improved thermal/photostabilities and larger Stoke's shifts as compared to commercially available quantum dots (Qdot 655) and organic dyes such as Alexa Fluor 555 and Rhodamine 6G. In vivo studies of CPDP‐FA NPs on a hepatoma H22 tumor‐bearing mouse model reveal that they could serve as an efficient FR/NIR fluorescent probe for targeted in vivo fluorescence imaging and cancer detection in a high contrast and specific manner. Together with the negligible in vivo toxicity, CPDP‐FA NPs are promising FR/NIR fluorescent probes for future in vivo applications.  相似文献   

9.
Fluorescence imaging in the spectral region beyond the conventional near‐infrared biological window (700–900 nm) can theoretically afford high resolution and deep tissue penetration. Although some efforts have been devoted to developing a short‐wave infrared (SWIR; 900–1700 nm) imaging modality in the past decade, long‐wavelength biomedical imaging is still suboptimal owing to the unsatisfactory materials properties of SWIR fluorophores. Taking advantage of organic dots based on an aggregation‐induced emission luminogen (AIEgen), herein microscopic vasculature imaging of brain and tumor is reported in living mice in the SWIR spectral region. The long‐wavelength emission of AIE dots with certain brightness facilitates resolving brain capillaries with high spatial resolution (≈3 µm) and deep penetration (800 µm). Owning to the deep penetration depth and real‐time imaging capability, in vivo SWIR microscopic angiography exhibits superior resolution in monitoring blood–brain barrier damage in mouse brain, and visualizing enhanced permeability and retention effect in tumor sites. Furthermore, the AIE dots show good biocompatibility, and no noticeable abnormalities, inflammations or lesions are observed in the main organs of the mice. This work will inspire new insights on development of advanced SWIR techniques for biomedical imaging.  相似文献   

10.
In this paper seven salts of pyridinium‐substituted tetraphenylethylene with different anions are reported. They show typical aggregation‐induced emission. Crystal structures of three of the salts with (CF3SO2)2N?, CF3SO3 ?, and SbF6 ? as the respective counter anions, are determined. The emission behavior of their amorphous and crystalline solids is investigated. Both amorphous and crystalline solids, except for the one with I?, are highly emissive. Certain amorphous solids are red‐emissive with almost the same quantum yields and fluorescence life‐times. However, some crystalline solids are found to show different emission colors varying from green to yellow. Thus, their emission colors can be tuned by the counter anions. Furthermore, certain crystalline solids are highly emissive compared to the respective amorphous solids. Such solid‐state emission behavior of these pyridinium‐substituted tetraphenylethylene salts is interpreted on the basis of their crystal structures. In addition, optical waveguiding behavior of fabricated microrods is presented.  相似文献   

11.
Fluorescence‐imaging‐guided photodynamic therapy has emerged as a promising protocol for cancer theranostics. However, facile preparation of such a theranostic material for simultaneously achieving bright emission with long wavelength, high‐performance reactive oxygen species (ROS) generation, and good targeting‐specificity of cancer cells, is highly desirable but remains challenging. In this study, a novel type of far‐red/near‐infrared‐emissive fluorescent molecules with aggregation‐induced emission (AIE) characteristics is synthesized through a few steps reaction. These AIE luminogens (AIEgens) possess simple structures, excellent photostabilities, large Stokes shifts, bright emission, and good biocompatibilities. Meanwhile, their ROS generation is extremely efficient with up to 90.7% of ROS quantum yield, which is far superior to that of some popularly used photosensitizers. Importantly, these AIEgens are able to selectively target and ablate cancer cells over normal cells without the aid of any extra targeting ligands. Rather than using laser light, one of the presented AIEgens (MeTTPy) shows a remarkable tumor‐targeting photodynamic therapeutic effect by using an ultralow‐power lamp light (18 mW cm?2). This study thus not only extends the applications scope of AIEgens, but also offers useful insights into designing a new generation of cancer theranostics.  相似文献   

12.
Visualization of the brain in its native environment is important for understanding common brain diseases. Herein, bright luminogens with remarkable aggregation-induced emission (AIE) characteristics and high quantum yields of up to 42.6% in the solid state are synthesized through facile reaction routes. The synthesized molecule, namely BTF, shows ultrabright far-red/near-infrared emission and can be fabricated into AIE dots by a simple nanoprecipitation procedure. Due to their high brightness, large Stokes shift, good biocompatibility, satisfactory photostability, and large three-photon absorption cross section, the AIE dots can be utilized as efficient fluorescent nanoprobes for in vivo brain vascular imaging through the intact skull by a three-photon fluorescence microscopy imaging technique. This is the first example of using AIE dots for the visualization of the cerebral stroke process through the intact skull of a mouse with high penetration depth and good image contrast. Such good results are anticipated to open up a new venue in the development of efficient emitters with strong nonlinear optical effects for noninvasive bioimaging of living brain.  相似文献   

13.
Two‐photon photodynamic therapy (PDT) is able to offer precise 3D manipulation of treatment volumes, providing a target level that is unattainable with current therapeutic techniques. The advancement of this technique is greatly hampered by the availability of photosensitizers with large two‐photon absorption (TPA) cross section, high reactive‐oxygen‐species (ROS) generation efficiency, and bright two‐photon fluorescence. Here, an effective photosensitizer with aggregation‐induced emission (AIE) characteristics is synthesized, characterized, and encapsulated into an amphiphilic block copolymer to form organic dots for two‐photon PDT applications. The AIE dots possess large TPA cross section, high ROS generation efficiency, and excellent photostability and biocompatibility, which overcomes the limitations of many conventional two‐photon photosensitizers. Outstanding therapeutic performance of the AIE dots in two‐photon PDT is demonstrated using in vitro cancer cell ablation and in vivo brain‐blood‐vessel closure as examples. This shows therapy precision up to 5 µm under two‐photon excitation.  相似文献   

14.
A simple strategy is developed to prepare eccentrically or homogeneously loaded nanoparticles (NPs) using poly (DL‐lactide‐co‐glycolide) (PLGA) as the encapsulation matrix in the presence of different amounts of polyvinyl alcohol (PVA) as the emulsifier. Using 2,3‐bis(4‐(phenyl(4‐(1,2,2‐triphenylvinyl)‐phenyl)amino)‐phenyl)‐fumaronitrile (TPETPAFN), a fluorogen with aggregation‐induced emission (AIE) characteristics, as an example, the eccentrically loaded PLGA NPs show increased fluorescence quantum yields (QYs) as compared to the homogeneously loaded ones. Field emission transmission electron microscopy and fluorescence lifetime measurements reveal that the higher QY of the eccentrically loaded NPs is due to the more compact aggregation of AIE fluorogens that restricts intramolecular rotations of phenyl rings, which is able to more effectively block the non‐radiative decay pathways. The eccentrically loaded NPs show far red/near infrared emission with a high fluorescence QY of 34% in aqueous media. In addition, by using poly([lactide‐co‐glycolide]‐b‐folate [ethylene glycol]) (PLGA‐PEG‐folate) as the co‐encapsulation matrix, the obtained NPs are born with surface folic acid groups, which are successfully applied for targeted cellular imaging with good photostability and low cytotoxicity. Moreover, the developed strategy is also demonstrated for inorganic‐component eccentrically or homogeneously loaded PLGA NPs, which facilitates the synthesis of polymer NPs with controlled internal architectures.  相似文献   

15.
The development of high‐efficiency and low‐cost organic emissive materials and devices is intrinsically limited by the energy‐gap law and spin statistics, especially in the near‐infrared (NIR) region. A novel design strategy is reported for realizing highly efficient thermally activated delayed fluorescence (TADF) materials via J‐aggregates with strong intermolecular charge transfer (CT). Two organic donor–acceptor molecules with strong and planar acceptor are designed and synthesized, which can readily form J‐aggregates with strong intermolecular CT in solid states and exhibit wide‐tuning emissions from yellow to NIR. Experimental and theoretical investigations expose that the formation of such J‐aggregates mixes Frenkel excitons and CT excitons, which not only contributes to a fast radiative decay rate and a slow nonradiative decay rate for achieving nearly unity photoluminescence efficiency in solid films, but significantly decreases the energy gap between the lowest singlet and triplet excited states (≈0.3 eV) to induce high‐efficiency TADF even in the NIR region. These organic light‐emitting diodes exhibit external quantum efficiencies of 15.8% for red emission and 14.1% for NIR emission, which represent the best result for NIR organic light‐emitting diodes (OLEDs) based on TADF materials. These findings open a new avenue for the development of high‐efficiency organic emissive materials and devices based on molecular aggregates.  相似文献   

16.
A cellulose paper is used impregnated with light‐emitting CdTe nanocrystals and carbon dots, and filled with a polyurethane to fabricate uniform transparent composite films with bright photoluminescence of red (R), green (G), and blue (B) (RGB) colors. A building brick‐like assembly method is introduced to realize RGB multicolor emission patterns from this composite material. By sectioning out individual pixels from monochrome‐emissive composite sheets, the advantage of the self‐healing properties of polyurethane is taken to arrange and weld them into a RGB patterned fabric by brief exposure to ethanol. This provides an approach to form single layer RGB light‐emitting pixels, such as potentially required in the display applications, without the use of any lithographic or etching processing. The method can utilize a wide range of different solution‐based kinds of light‐emitting materials.  相似文献   

17.
Carbon dots (CDots)‐based solid‐state luminescent materials have important applications in light‐emitting devices owing to their outstanding optical properties. However, it still remains a challenge to develop multiple‐color‐emissive solid‐state CDots, due to the serious self‐quenching of the CDots in the aggregation or solid state. Herein, a one‐step synthesis of multiple‐color‐emissive solid‐state silica‐coated CDots (silica/CDots) composites by controlling CDots loading fraction and composite morphology to realize the adjustment of emitting color is reported. The emission of resultant silica/CDots composites shifts from blue to orange with the photoluminescence quantum yields of 57.9%, 34.3%, and 32.7% for blue, yellow, and orange emitting, respectively. Furthermore, the yellow emitting silica/CDots composites exhibit an excellent fluorescence thermal stability, and further have been applied to fabricate white‐light‐emitting devices with a high color rendering index of above 80.  相似文献   

18.
Compared to efficient green and near‐infrared light‐emitting diodes (LEDs), less progress has been made on deep‐blue perovskite LEDs. They suffer from inefficient domain [various number of PbX6? layers (n)] control, resulting in a series of unfavorable issues such as unstable color, multipeak profile, and poor fluorescence yield. Here, a strategy involving a delicate spacer modulation for quasi‐2D perovskite films via an introduction of aromatic polyamine molecules into the perovskite precursor is reported. With low‐dimensional component engineering, the n1 domain, which shows nonradiative recombination and retarded exciton transfer, is significantly suppressed. Also, the n3 domain, which represents the population of emission species, is remarkably increased. The optimized quasi‐2D perovskite film presents blue emission from the n3 domain (peak at 465 nm) with a photoluminescence quantum yield (PLQY) as high as 77%. It enables the corresponding perovskite LEDs to deliver stable deep‐blue emission (CIE (0.145, 0.05)) with an external quantum efficiency (EQE) of 2.6%. The findings in this work provide further understanding on the structural and emission properties of quasi‐2D perovskites, which pave a new route to design deep‐blue‐emissive perovskite materials.  相似文献   

19.
Photodynamic therapy (PDT), which relies on photosensitizers (PS) and light to generate reactive oxygen species to kill cancer cells or bacteria, has attracted much attention in recent years. PSs with both bright emission and efficient singlet oxygen generation have also been used for image‐guided PDT. However, simultaneously achieving effective 1O2 generation, long wavelength absorption, and stable near‐infrared (NIR) emission with low dark toxicity in a single PS remains challenging. In addition, it is well known that when traditional PSs are made into nanoparticles, they encounter quenched fluorescence and reduced 1O2 production. In this contribution, these challenging issues have been successfully addressed through designing the first photostable photosensitizer with aggregation‐induced NIR emission and very effective 1O2 generation in aggregate state. The yielded nanoparticles show very effective 1O2 generation, bright NIR fluorescence centered at 820 nm, excellent photostability, good biocompatibility, and negligible dark in vivo toxicity. Both in vitro and in vivo experiments prove that the nanoparticles are excellent candidates for image‐guided photodynamic anticancer therapy.  相似文献   

20.
Emerging graphene quantum dots (GQDs) have received much attention for use as next‐generation light‐emitting diodes. However, in the solid‐state, π‐interaction‐induced aggregation‐caused photoluminescence (PL) quenching (ACQ) in GQDs makes it challenging to realize high‐performance devices. Herein, GQDs incorporated with boron oxynitride (GQD@BNO) are prepared from a mixture of GQDs, boric acid, and urea in water via one‐step microwave heating. Due to the effective dispersion in the BNO matrix, ACQ is significantly suppressed, resulting in high PL quantum yields (PL‐QYs) of up to 36.4%, eightfold higher than that of pristine GQD in water. The PL‐QY enhancement results from an increase in the spontaneous emission rate of GQDs due to the surrounding BNO matrix, which provides a high‐refractive‐index material and fluorescence energy transfer from the larger‐gap BNO donor to the smaller‐gap GQD acceptor. A high solid‐state PL‐QY makes the GQD@BNO an ideal active material for use in AC powder electroluminescent (ACPEL) devices, with the luminance of the first working GQD‐based ACPEL device exceeding 283 cd m?2. This successful demonstration shows promise for the use of GQDs in the field of low‐cost, ecofriendly electroluminescent devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号