首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
N‐doped carbon nanomaterials have rapidly grown as the most important metal‐free catalysts in a wide range of chemical and electrochemical reactions. This current report summarizes the latest advances in N‐doped carbon electrocatalysts prepared by N mono‐doping and co‐doping with other heteroatoms. The structure–performance relationship of these materials is subsequently rationalized and perspectives on developing more efficient and sustainable electrocatalysts from carbon nanomaterials are also suggested.  相似文献   

2.
Li‐ion capacitors (LICs) have demonstrated great potential for bridging the gap between lithium‐ion batteries and supercapacitors in electrochemical energy storage area. The main challenge for current LICs (contain a battery‐type anode as well as a capacitor‐type cathode) lies in circumventing the mismatched electrode kinetics and cycle degradation. Herein, a mesh‐like nitrogen (N)‐doped carbon nanosheets with multiscale pore structure is adopted as both cathode and anode for a dual‐carbon type of symmetric LICs to alleviate the above mentioned problems via a facile and green synthesis approach. With rational design, this dual‐carbon LICs exhibits a broad high working voltage window (0–4.5 V), an ultrahigh energy density of 218.4 Wh kg 1 electrodes ( 229.8 Wh L 1 electrodes ), the highest power density of 22.5 kW kg 1 electrodes ( 23.7 kW L 1 electrodes ) even under an ultrahigh energy density of 97.5 Wh kg 1 electrodes ( 102.6 Wh L 1 electrodes ), as well as reasonably good cycling stability with capacity retention of 84.5% (only 0.0016% capacity loss per cycle) within 10 000 cycles under a high current density of 5 A g?1. This study provides an efficient method and option for the development of high performance LIC devices.  相似文献   

3.
4.
5.
6.
7.
8.
Carbonaceous nanotubes (CTs) represent one of the most popular and effective carbon electrode materials for supercapacitors, but the electrochemistry performance of CTs is largely limited by their relatively low specific surface area, insufficient usage of intratube cavity, low content of heteroatom, and poor porosity. An emerging strategy for circumventing these issues is to design novel porous CT‐based nanostructures. Herein, a spheres‐in‐tube nanostructure with hierarchical porosity is successfully engineered, by encapsulating heteroatom‐doping hollow carbon spheres into one carbonaceous nanotube (HCSs@CT). This intriguing nanoarchitecture integrates the merits of large specific surface area, good porosity, and high content of heteroatoms, which synergistically facilitates the transportation and exchange of ions and electrons. Accordingly, the as‐prepared HCSs@CTs possess outstanding performances as electrode materials of supercapacitors, including superior capacitance to that of CTs, HCSs, and their mixtures, coupled with excellent cycling life, demonstrating great potential for applications in energy storage.  相似文献   

9.
10.
11.
12.
13.
14.
There is an explosive interest in 1D nanostructured materials for biological sensors. Among these nanometer‐scale materials, single‐walled carbon nanotubes (SWNTs) offer the advantages of possible biocompatibility, size compatibility, and sensitivity towards minute electrical perturbations. In particular, because of these inherent qualities, changes in SWNT conductivity have been explored in order to study the interaction of biomolecules with SWNTs. This Review discusses these interactions, with a focus on carbon nanotube field‐effect transistors (NTFETs). Recent examples of applications of NTFET devices for detection of proteins, antibody–antigen assays, DNA hybridization, and enzymatic reactions involving glucose are summarized. Examples of complementary techniques, such as microscopy and spectroscopy, are covered as well.  相似文献   

15.
Single‐walled carbon nanotubes (SWCNTs) have been the focus of intense research, and the body of literature continues to grow exponentially, despite more than two decades having passed since the first reports. As well as extensive studies of the fundamental properties, this has seen SWCNTs used in a plethora of applications as far ranging as microelectronics, energy storage, solar cells, and sensors, to cancer treatment, drug delivery, and neuronal interfaces. On the other hand, the properties and applications of double‐walled carbon nanotubes (DWCNTs) have remained relatively under‐explored. This is despite DWCNTs not only sharing many of the same unique characteristics of their single‐walled counterparts, but also possessing an additional suite of potentially advantageous properties arising due to the presence of the second wall and the often complex inter‐wall interactions that arise. For example, it is envisaged that the outer wall can be selectively functionalized whilst still leaving the inner wall in its pristine state and available for signal transduction. A similar situation arises in DWCNT field effect transistors (FETs), where the outer wall can provide a convenient degree of chemical shielding of the inner wall from the external environment, allowing the excellent transconductance properties of the pristine nanotubes to be more fully exploited. Additionally, DWCNTs should also offer unique opportunities to further the fundamental understanding of the inter‐wall interactions within and between carbon nanotubes. However, the realization of these goals has so far been limited by the same challenge experienced by the SWCNT field until recent years, namely, the inherent heterogeneity of raw, as‐produced DWCNT material. As such, there is now an emerging field of research regarding DWCNT processing that focuses on the preparation of material of defined length, diameter and electronic type, and which is rapidly building upon the experience gained by the broader SWCNT community. This review describes the background of the field, summarizing some relevant theory and the available synthesis and purification routes; then provides a thorough synopsis of the current state‐of‐the‐art in DWCNT sorting methodologies, outlines contemporary challenges in the field, and discusses the outlook for various potential applications of the resulting material.  相似文献   

16.
17.
18.
Cost‐effective synthesis of carbon nanospheres with a desirable mesoporous network for diversified energy storage applications remains a challenge. Herein, a direct templating strategy is developed to fabricate monodispersed N‐doped mesoporous carbon nanospheres (NMCSs) with an average particle size of 100 nm, a pore diameter of 4 nm, and a specific area of 1093 m2 g?1. Hexadecyl trimethyl ammonium bromide and tetraethyl orthosilicate not only play key roles in the evolution of mesopores but also guide the assembly of phenolic resins to generate carbon nanospheres. Benefiting from the high surface area and optimum mesopore structure, NMCSs deliver a large specific capacitance up to 433 F g?1 in 1 m H2SO4. The NMCS electrodes–based symmetric sandwich supercapacitor has an output voltage of 1.4 V in polyvinyl alcohol/H2SO4 gel electrolyte and delivers an energy density of 10.9 Wh kg?1 at a power density of 14014.5 W kg?1. Notably, NMCSs can be directly applied through the mask‐assisted casting technique by a doctor blade to fabricate micro‐supercapacitors. The micro‐supercapacitors exhibit excellent mechanical flexibility, long‐term stability, and reliable power output.  相似文献   

19.
Tri‐s‐triazine‐based crystalline carbon nitride nanosheets (CCNNSs) have been successfully extracted via a conventional and cost‐effective sonication–centrifugation process. These CCNNSs possess a highly defined and unambiguous structure with minimal thickness, large aspect ratios, homogeneous tri‐s‐triazine‐based units, and high crystallinity. These tri‐s‐triazine‐based CCNNSs show significantly enhanced photocatalytic hydrogen generation activity under visible light than g‐C3N4, poly (triazine imide)/Li+ Cl, and bulk tri‐s‐triazine‐based crystalline carbon nitrides. A highly apparent quantum efficiency of 8.57% at 420 nm for hydrogen production from aqueous methanol feedstock can be achieved from tri‐s‐triazine‐based CCNNSs, exceeding most of the reported carbon nitride nanosheets. Benefiting from the inherent structure of 2D crystals, the ultrathin tri‐s‐triazine‐based CCNNSs provide a broad range of application prospects in the fields of bioimaging, and energy storage and conversion.  相似文献   

20.
High‐purity semiconducting single‐walled carbon nanotubes (s‐SWCNTs) are of paramount significance for the construction of next‐generation electronics. Until now, a number of elaborate sorting and purification techniques for s‐SWCNTs have been developed, among which solution‐based sorting methods show unique merits in the scale production, high purity, and large‐area film formation. Here, the recent progress in the solution processing of s‐SWCNTs and their application in electronic devices is systematically reviewed. First, the solution‐based sorting and purification of s‐SWCNTs are described, and particular attention is paid to the recent advance in the conjugated polymer‐based sorting strategy. Subsequently, the solution‐based deposition and morphology control of a s‐SWCNT thin film on a surface are introduced, which focus on the strategies for network formation and alignment of SWCNTs. Then, the recent advances in electronic devices based on s‐SWCNTs are reviewed with emphasis on nanoscale s‐SWCNTs' high‐performance integrated circuits and s‐SWCNT‐based thin‐film transistors (TFT) array and circuits. Lastly, the existing challenges and development trends for the s‐SWCNTs and electronic devices are briefly discussed. The aim is to provide some useful information and inspiration for the sorting and purification of s‐SWCNTs, as well as the construction of electronic devices with s‐SWCNTs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号