首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.

The present study reports the role of zinc oxide nanoparticles (ZnO NPs) embedded in graphene oxide (GO)-based RRAM for non-volatile memory applications. GO thin film embedded with different concentrations of ZnO NPs was deposited on bottom electrode, i.e., indium tin oxide (ITO) coated glass. Thermal evaporation technique was used for the fabrication of top electrodes for electrical measurements. Structural and morphological studies of synthesized GO and ZnO NPs were done by X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). Switching characteristics of the RRAM devices were investigated using electrical measurements. It has been observed that the optimized concentration of ZnO NPs (20%) shows stable switching behavior with low SET (??0.61 V) and RESET (+?0.65 V) voltages as compared to pure GO devices. The switching of the fabricated memory devices from high resistance state (HRS) to low resistance state (LRS) has been found due to conductive filament formed between top and bottom electrodes. This conductive filament has been confirmed by the change in resistance as a function of temperature. The Al/GO-ZnO(20%)/ITO devices show stable endurance behavior for >?50 cycles and retention behavior for >?4?×?103 s. In HRS, the dominated conduction mechanism was found to be space-charge limited conduction (SCLC), whereas in LRS, the Ohmic conduction mechanism was observed. The incorporation of ZnO NPs increased the number of oxygen vacancies in switching layer which eventually enhanced the formation of conductive filament. This phenomenon has been confirmed using XPS characterization of the switching layer. These optimized concentrations of ZnO embedded in GO switching layers provide a way for future low power non-volatile memory devices.

  相似文献   

2.
Resistive-switching memory (RRAM) is an emerging nanoscale device based on the localized metal-insulator transition within a few-nanometer-sized metal oxide region. RRAM is one of the most promising memory technologies for the ultimate downscaling of nonvolatile memory. However, to develop memory arrays with densities approaching 1 Tb cm(-2) , bottom-up schemes based on synthesis and assembly of metal oxide nanowires (NWs) must be demonstrated. A RRAM memory device based on core-shell Ni-NiO NWs is presented, in which the Ni core plays the role of the metallic interconnect, while the NiO shell serves as the active switching layer. A resistance change of at least two orders of magnitude is shown on electrical operation of the device, and the metal-insulator switching is unequivocally demonstrated to take place in the NiO shell at the crossing between two NWs or between a NW and a gold electrode strip. Since the fabrication of the NW crossbar device is not limited by lithography, this approach may provide a basis for high-density, low-cost crossbar memory with long-term storage stability.  相似文献   

3.
Inspired by the highly parallel processing power and low energy consumption of the biological nervous system, the development of a neuromorphic computing paradigm to mimic brain‐like behaviors with electronic components based artificial synapses may play key roles to eliminate the von Neumann bottleneck. Random resistive access memory (RRAM) is suitable for artificial synapse due to its tunable bidirectional switching behavior. In this work, a biological spiking synapse is developed with solution processed Au@Ag core–shell nanoparticle (NP)‐based RRAM. The device shows highly controllable bistable resistive switching behavior due to the favorable Ag ions migration and filament formation in the composite film, and the good charge trapping and transport property of Au@Ag NPs. Moreover, comprehensive synaptic functions of biosynapse including paired‐pulse depression, paired‐pulse facilitation, post‐tetanic potentiation, spike‐time‐dependent plasticity, and the transformation from short‐term plasticity to long‐term plasticity are emulated. This work demonstrates that the solution processed bimetal core–shell nanoparticle‐based biological spiking synapse provides great potential for the further creation of a neuromorphic computing system.  相似文献   

4.
The in‐depth understanding of ions' generation and movement inside all‐inorganic perovskite quantum dots (CsPbBr3 QDs), which may lead to a paradigm to break through the conventional von Neumann bottleneck, is strictly limited. Here, it is shown that formation and annihilation of metal conductive filaments and Br? ion vacancy filaments driven by an external electric field and light irradiation can lead to pronounced resistive‐switching effects. Verified by field‐emission scanning electron microscopy as well as energy‐dispersive X‐ray spectroscopy analysis, the resistive switching behavior of CsPbBr3 QD‐based photonic resistive random‐access memory (RRAM) is initiated by the electrochemical metallization and valance change. By coupling CsPbBr3 QD‐based RRAM with a p‐channel transistor, the novel application of an RRAM–gate field‐effect transistor presenting analogous functions of flash memory is further demonstrated. These results may accelerate the technological deployment of all‐inorganic perovskite QD‐based photonic resistive memory for successful logic application.  相似文献   

5.
We demonstrate that resistance random access memory (RRAM) can be fabricated based on CdS-nanocrystal thin films. A simple drop-drying of the CdS-nanocrystal solution leads to the formation of uniform thin films with controlled thickness. RRAMs with a Ag/Al(2) O(3) /CdS/Pt structure show bipolar switching behavior, with average values of the set voltage (V(Set) ) and reset voltage (V(Reset) ) of 0.15 V and -0.19 V, respectively. The RRAM characteristics are critically influenced by the thickness of the Al(2) O(3) barrier layer, which prevents significant migration of Ag into the CdS layer as revealed by Auger electron spectroscopy (AES). Interestingly, RRAM without an Al(2) O(3) layer (i.e., Ag/CdS/Pt structure) also shows bipolar switching behavior, but the polarity is opposite to that of RRAM with the Al(2) O(3) layer (i.e., Ag/Al(2) O(3) /CdS/Pt structure). The operation of both kinds of devices can be explained by the conventional conductive bridging mechanism. Additionally, we fabricated RRAM devices on Kapton film for potential applications in flexible electronics, and the performance of this RRAM device was comparable to that of RRAMs fabricated on hard silicon substrates. Our results show a new possibility of using chalcogenide nanocrystals for RRAM applications.  相似文献   

6.
Atomic layer deposition technique has been used to prepare tantalum nitride nanoparticles (TaN-NPs)and sandwiched between Al-doped HfO2 layers to achieve ITO/HfAlO/TaN-NP/HfAlO/ITO RRAM device.Transmission electron microscopy along with energy dispersive spectroscopy confirms the presence of TaN-NPs.X-ray photoelectron spectroscopy suggests that part of TaN converted to tantalum oxynitride(TaOxNy) which plays an important role in stable cycle-to-cycle resistive switching.Charge trapping and oxygen vacancy creation were found to be modified after the inclusion of TaN-NPs inside RRAM struc-ture.Also,HfAlO/TaOxNy interface due to the presence TaN-NPs improves the device-to-device switching reliability by reducing the probability of random rupture/formation of conductive filaments (CFs).DC en-durance of more than 103 cycles and memory data retention up to 104 s was achieved with an insignif-icant variation of different resistance states.Multilevel conductance was attained by controlling RESET voltage with stable data retention in multiple states.The volatile threshold switching was monitored af-ter controlling the CF forming at 200 nA current compliance with high selectivity of~103.Synaptic learn-ing behavior has been demonstrated by spike-rate-dependent plasticity (SRDP).Reliable potentiation and depression processes were observed after the application of suitable negative and positive pulses which shows the capability of the TaN-NPs based RRAM device for transparent synaptic devices.  相似文献   

7.
Creation of nanometer‐scale conductive filaments in resistive switching devices makes them appealing for advanced electrical applications. While in situ electrical probing transmission electron microscopy promotes fundamental investigations of how the conductive filament comes into existence, it does not provide proof‐of‐principle observations for the filament growth. Here, using advanced microscopy techniques, electrical, 3D compositional, and structural information of the switching‐induced conductive filament are described. It is found that during in situ probing microscopy of a Ag/TiO2/Pt device showing both memory‐ and threshold‐switching characteristics, a crystalline Ag‐doped TiO2 forms at vacant sites on the device surface and acts as the conductive filament. More importantly, change in filament morphology varying with applied compliance currents determines the underlying switching mechanisms that govern either memory or threshold response. When focusing more on threshold switching features, it is demonstrated that the structural disappearance of the filament arises at the end of the constricted region and leads to the spontaneous phase transformation from crystalline conductive state into an initial amorphous insulator. Use of the proposed method enables a new pathway for observing nanosized features in a variety of devices at the atomic scale in three dimensions.  相似文献   

8.
Wu X  Pey KL  Raghavan N  Liu WH  Li X  Bai P  Zhang G  Bosman M 《Nanotechnology》2011,22(45):455702
We apply our understanding of the physics of failure in the post-breakdown regime of high-κ dielectric-based conventional logic transistors having a metal-insulator-semiconductor (MIS) structure to interpret the mechanism of resistive switching in resistive random-access memory (RRAM) technology metal-insulator-metal (MIM) stacks. Oxygen vacancies, gate metal migration and metal filament formation in the gate dielectric which constitute the chemistry of breakdown in the post-breakdown stage of logic gate stacks are attributed to be the mechanisms responsible for the SET process in RRAM technology. In this paper, we draw an analogy between the breakdown study in logic devices and filamentation physics in resistive non-volatile memory.  相似文献   

9.
Resistance change random access memory (RRAM) cells, typically built as MIM capacitor structures, consist of insulating layers I sandwiched between metal layers M, where the insulator performs the resistance switching operation. These devices can be electrically switched between two or more stable resistance states at a speed of nanoseconds, with long retention times, high switching endurance, low read voltage, and large switching windows. They are attractive candidates for next-generation non-volatile memory, particularly as a flash successor, as the material properties can be scaled to the nanometer regime. Several resistance switching models have been suggested so far for transition metal oxide based devices, such as charge trapping, conductive filament formation, Schottky barrier modulation, and electrochemical migration of point defects. The underlying fundamental principles of the switching mechanism still lack a detailed understanding, i.e. how to control and modulate the electrical characteristics of devices incorporating defects and impurities, such as oxygen vacancies, metal interstitials, hydrogen, and other metallic atoms acting as dopants. In this paper, state of the art ab initio theoretical methods are employed to understand the effects that filamentary types of stable oxygen vacancy configurations in TiO(2) and NiO have on the electronic conduction. It is shown that strong electronic interactions between metal ions adjacent to oxygen vacancy sites results in the formation of a conductive path and thus can explain the 'ON' site conduction in these materials. Implication of hydrogen doping on electroforming is discussed for Pr(0.7)Ca(0.3)MnO(3) devices based on electrical characterization and FTIR measurements.  相似文献   

10.
Resistive random access memory (RRAM) devices are fabricated through a simple solution process using glucose, which is a natural biomaterial for the switching layer of RRAM. The fabricated glucose‐based RRAM device shows nonvolatile bipolar resistive switching behavior, with a switching window of 103. In addition, the endurance and data retention capability of glucose‐based RRAM exhibit stable characteristics up to 100 consecutive cycles and 104 s under constant voltage stress at 0.3 V. The interface between the top electrode and the glucose film is carefully investigated to demonstrate the bipolar switching mechanism of the glucose‐based RRAM device. The glucose based‐RRAM is also evaluated on a polyimide film to verify the possibility of a flexible platform. Additionally, a cross‐bar array structure with a magnesium electrode is prepared on various substrates to assess the degradability and biocompatibility for the implantable bioelectronic devices, which are harmless and nontoxic to the human body. It is expected that this research can provide meaningful insights for developing the future bioelectronic devices.  相似文献   

11.
Conductive filaments (CFs)‐based resistive random access memory possesses the ability of scaling down to sub‐nanoscale with high‐density integration architecture, making it the most promising nanoelectronic technology for reclaiming Moore's law. Compared with the extensive study in inorganic switching medium, the scientific challenge now is to understand the growth kinetics of nanoscale CFs in organic polymers, aiming to achieve controllable switching characteristics toward flexible and reliable nonvolatile organic memory. Here, this paper systematically investigates the resistive switching (RS) behaviors based on a widely adopted vertical architecture of Al/organic/indium‐tin‐oxide (ITO), with poly(9‐vinylcarbazole) as the case study. A nanoscale Al filament with a dynamic‐gap zone (DGZ) is directly observed using in situ scanning transmission electron microscopy (STEM) , which demonstrates that the RS behaviors are related to the random formation of spliced filaments consisting of Al and oxygen vacancy dual conductive channels growing through carbazole groups. The randomicity of the filament formation can be depressed by introducing a cone‐shaped contact via a one‐step integration method. The conical electrode can effectively shorten the DGZ and enhance the localized electric field, thus reducing the switching voltage and improving the RS uniformity. This study provides a deeper insight of the multiple filamentary mechanisms for organic RS effect.  相似文献   

12.
The silver‐embedded gelatin (AgG) thin film produced by the solution method of metal salts dissolved in gelatin is presented. Its simple fabrication method ensures the uniform distribution of Ag dots. Memory devices based on AgG exhibit good device performance, such as the ON/OFF ratio in excess of 105 and the coefficient of variation in less of 50%. To further investigate the position of filament formation and the role of each element, current sensing atomic force microscopy (CSAFM) analysis as well as elemental line profiles across the two different conditions in the LRS and HRS are analyzed. The conductive and nonconductive regions in the current map of the CSAFM image show that the conductive filaments occur in the AgG layer around Ag dots. The migration of oxygen ions and the redox reaction of carbon are demonstrated to be the driving mechanism for the resistive switching of AgG memory devices. The results show that dissolving metal salts in gelatin is an effective way to achieve high‐performance organic–electronic applications.  相似文献   

13.
Memristors with nonvolatile memory characteristics have been expected to open a new era for neuromorphic computing and digital logic. However, existing memristor devices based on oxygen vacancy or metal‐ion conductive filament mechanisms generally have large operating currents, which are difficult to meet low‐power consumption requirements. Therefore, it is very necessary to develop new materials to realize memristor devices that are different from the mechanisms of oxygen vacancy or metal‐ion conductive filaments to realize low‐power operation. Herein, high‐performance and low‐power consumption memristors based on 2D WS2 with 2H phase are demonstrated, which show fast ON (OFF) switching times of 13 ns (14 ns), low program current of 1 µA in the ON state, and SET (RESET) energy reaching the level of femtojoules. Moreover, the memristor can mimic basic biological synaptic functions. Importantly, it is proposed that the generation of sulfur and tungsten vacancies and electron hopping between vacancies are dominantly responsible for the resistance switching performance. Density functional theory calculations show that the defect states formed by sulfur and tungsten vacancies are at deep levels, which prevent charge leakage and facilitate the realization of low‐power consumption for neuromorphic computing application.  相似文献   

14.
Due to their advantages compared with planar structures, rolled‐up tubes have been applied in many fields, such as field‐effect transistors, compact capacitors, inductors, and integrative sensors. On the other hand, because of its perfect insulating nature, ultrahigh mechanical strength and atomic thickness property, 2D hexagonal boron nitride (h‐BN) is a very suitable material for rolled‐up memory applications. In this work, a tubular 3D resistive random access memory (RRAM) device based on rolled‐up h‐BN tube is realized, which is achieved by self‐rolled‐up technology. The tubular RRAM device exhibits bipolar resistive switching behavior, nonvolatile data storage ability, and satisfactorily low programming current compared with other 2D material‐based RRAM devices. Moreover, by releasing from the substrate, the footprint area of the tubular device is reduced by six times. This tubular RRAM device has great potential for increasing the data storage density, lowering the power consumption, and may be applied in the fields of rolled‐up systems and sensing‐storage integration.  相似文献   

15.
It is desirable to imitate synaptic functionality to break through the memory wall in traditional von Neumann architecture. Modulating heterosynaptic plasticity between pre‐ and postneurons by another modulatory interneuron ensures the computing system to display more complicated functions. Optoelectronic devices facilitate the inspiration for high‐performance artificial heterosynaptic systems. Nevertheless, the utilization of near‐infrared (NIR) irradiation to act as a modulatory terminal for heterosynaptic plasticity emulation has not yet been realized. Here, an NIR resistive random access memory (RRAM) is reported, based on quasiplane MoSe2/Bi2Se3 heterostructure in which the anomalous NIR threshold switching and NIR reset operation are realized. Furthermore, it is shown that such an NIR irradiation can be employed as a modulatory terminal to emulate heterosynaptic plasticity. The reconfigurable 2D image recognition is also demonstrated by an RRAM crossbar array. NIR annihilation effect in quasiplane MoSe2/Bi2Se3 nanosheets may open a path toward optical‐modulated in‐memory computing and artificial retinal prostheses.  相似文献   

16.
Memory and threshold resistance switching in Ni/NiO core-shell nanowires   总被引:2,自引:0,他引:2  
He L  Liao ZM  Wu HC  Tian XX  Xu DS  Cross GL  Duesberg GS  Shvets IV  Yu DP 《Nano letters》2011,11(11):4601-4606
We report on the first controlled alternation between memory and threshold resistance switching (RS) in single Ni/NiO core-shell nanowires by setting the compliance current (I(CC)) at room temperature. The memory RS is triggered by a high I(CC), while the threshold RS appears by setting a low I(CC), and the Reset process is achieved without setting a I(CC). In combination with first-principles calculations, the physical mechanisms for the memory and threshold RS are fully discussed and attributed to the formation of an oxygen vacancy (Vo) chain conductive filament and the electrical field induced breakdown without forming a conductive filament, respectively. Migration of oxygen vacancies can be activated by appropriate Joule heating, and it is energetically favorable to form conductive chains rather than random distributions due to the Vo-Vo interaction, which results in the nonvolatile switching from the off- to the on-state. For the Reset process, large Joule heating reorders the oxygen vacancies by breaking the Vo-Vo interactions and thus rupturing the conductive filaments, which are responsible for the switching from on- to off-states. This deeper understanding of the driving mechanisms responsible for the threshold and memory RS provides guidelines for the scaling, reliability, and reproducibility of NiO-based nonvolatile memory devices.  相似文献   

17.
We investigate oxygen-deficient anatase using quantum-chemical simulation within the density functional theory and X-ray photoelectron spectroscopy. It is demonstrated that etching of anatase with argon ions with an energy of 2.4 keV results in the formation of oxygen vacancies and polyvacancies at a concentration of approximately 1020 cm–3 in the crystal. It was found that the most energetically favorable spatial configuration of an oxygen polyvacancy is a three-dimensional chain in crystallographic direction [100] or [010]. The ability of oxygen polyvacancy in the form of a chain to act as a conductive filament and to participate in the resistive switching is discussed.  相似文献   

18.
With the advent of the era of big data, resistive random access memory (RRAM) has become one of the most promising nanoscale memristor devices (MDs) for storing huge amounts of information. However, the switching voltage of the RRAM MDs shows a very broad distribution due to the random formation of the conductive filaments. Here, self‐assembled lead sulfide (PbS) quantum dots (QDs) are used to improve the uniformity of switching parameters of RRAM, which is very simple comparing with other methods. The resistive switching (RS) properties of the MD with the self‐assembled PbS QDs exhibit better performance than those of MDs with pure‐Ga2O3 and randomly distributed PbS QDs, such as a reduced threshold voltage, uniformly distributed SET and RESET voltages, robust retention, fast response time, and low power consumption. This enhanced performance may be attributed to the ordered arrangement of the PbS QDs in the self‐assembled PbS QDs which can efficiently guide the growth direction for the conducting filaments. Moreover, biosynaptic functions and plasticity, are implemented successfully in the MD with the self‐assembled PbS QDs. This work offers a new method of improving memristor performance, which can significantly expand existing applications and facilitate the development of artificial neural systems.  相似文献   

19.
Ielmini D  Nardi F  Cagli C 《Nanotechnology》2011,22(25):254022
NiO films display unipolar resistance switching characteristics, due to the electrically induced formation and rupture of nanofilaments. While the applicative interest for possible use in highly dense resistance switching memory (RRAM) is extremely high, switching phenomena pose strong fundamental challenges in understanding the physical mechanisms and models. This work addresses the set and reset mechanisms for the formation and rupture of nanofilaments in NiO RRAM devices. Reset is described in terms of thermally-accelerated diffusion and oxidation processes, and its resistance dependence is explained by size-dependent Joule heating and oxidation. The filament is described as a region with locally-enhanced doping, resulting in an insulator-metal transition driven by structural and chemical defects. The set mechanism is explained by a threshold switching effect, triggering chemical reduction and a consequent local increase of metallic doping. The possible use of the observed resistance-dependent reset and set parameters to improve the memory array operation and variability is finally discussed.  相似文献   

20.
This review summarizes the mechanism and performance of metal oxide based resistive switching memory The origin of resistive switching(RS) behavior can be roughly classified into the conducting filament type and the interface type. Here,we adopt the filament type to study the metal oxide based resistive switching memory,which considers the migration of metallic cations and oxygen vacancies,as well as discuss two main mechanisms including the electrochemical metallization effect(ECM) and valence change memory effect(VCM). At the light of the influence of the electrode materials and switching layers on the RS characteristics,an overview has also been given on the performance parameters including the uniformity endurance,the retention,and the multi-layer storage. Especially,we mentioned ITO(indium tin oxide electrode and discussed the novel RS characteristics related with ITO. Finally,the challenges resistive random access memory(RRAM) device is facing,as well as the future development trend,are expressed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号