首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Mixed matrix membranes (MMMs), conjugating the advantages of flexible processing-ability of polymers and high-speed mass transfer of porous fillers, are recognized as the next-generation high-performance CO2 capture membranes for solving the current global climate challenge. However, controlling the crystallization of porous metal-organic frameworks (MOFs) and thus the close stacking of MOF nanocrystals in the confined polymer matrix is still undoable, which thus cannot fully utilize the superior transport attribute of MOF channels. In this study, the “confined swelling coupled solvent-controlled crystallization” strategy is employed for well-tailoring the in-situ crystallization of MOF nanocrystals, realizing rapid (<5 min) construction of defect-free freeway channels for CO2 transportation in MMMs due to the close stacking of MOF nanocrystals. Consequently, the fabricated MMMs exhibit approximately fourfold enhancement in CO2 permeability, i.e., 2490 Barrer with a CO2/N2 selectivity of 37, distinctive antiplasticization merit, as well as long-term running stability, which is at top-tier level, enabling the large-scale manufacture of high-performance MMMs for gas separation.  相似文献   

2.
Photoreduction of CO2 into reusable carbon forms is considered as a promising approach to address the crisis of energy from fossil fuels and reduce excessive CO2 emission. Recently, metal–organic frameworks (MOFs) have attracted much attention as CO2 photoreduction‐related catalysts, owing to their unique electronic band structures, excellent CO2 adsorption capacities, and tailorable light‐absorption abilities. Recent advances on the design, synthesis, and CO2 reduction applications of MOF‐based photocatalysts are discussed here, beginning with the introduction of the characteristics of high‐efficiency photocatalysts and structural advantages of MOFs. The roles of MOFs in CO2 photoreduction systems as photocatalysts, photocatalytic hosts, and cocatalysts are analyzed. Detailed discussions focus on two constituents of pure MOFs (metal clusters such as Ti–O, Zr–O, and Fe–O clusters and functional organic linkers such as amino‐modified, photosensitizer‐functionalized, and electron‐rich conjugated linkers) and three types of MOF‐based composites (metal–MOF, semiconductor–MOF, and photosensitizer–MOF composites). The constituents, CO2 adsorption capacities, absorption edges, and photocatalytic activities of these photocatalysts are highlighted to provide fundamental guidance to rational design of efficient MOF‐based photocatalyst materials for CO2 reduction. A perspective of future research directions, critical challenges to be met, and potential solutions in this research field concludes the discussion.  相似文献   

3.
Core–multishelled structures with controlled chemical composition have attracted great interest due to their fascinating electrochemical performance. Herein, a metal–organic framework (MOF)‐on‐MOF self‐templated strategy is used to fabricate okra‐like bimetal sulfide (Fe7S8/C@ZnS/N‐C@C) with core–double‐shelled structure, in which Fe7S8/C is distributed in the cores, and ZnS is embedded in one of the layers. The MOF‐on‐MOF precursor with an MIL‐53 core, a ZIF‐8 shell, and a resorcinol–formaldehyde (RF) layer (MIL‐53@ZIF‐8@RF) is prepared through a layer‐by‐layer assembly method. After calcination with sulfur powder, the resultant structure has a hierarchical carbon matrix, abundant internal interface, and tiered active material distribution. It provides fast sodium‐ion reaction kinetics, a superior pseudocapacitance contribution, good resistance of volume changes, and stepwise sodiation/desodiation reaction mechanism. As an anode material for sodium‐ion batteries, the electrochemical performance of Fe7S8/C@ZnS/N‐C@C is superior to that of Fe7S8/C@ZnS/N‐C, Fe7S8/C, or ZnS/N‐C. It delivers a high and stable capacity of 364.7 mAh g?1 at current density of 5.0 A g?1 with 10 000 cycles, and registers only 0.00135% capacity decay per cycle. This MOF‐on‐MOF self‐templated strategy may provide a method to construct core–multishelled structures with controlled component distributions for the energy conversion and storage.  相似文献   

4.
While metal‐organic frameworks (MOFs) show great potential for gas adsorption and storage, their powder form limits deployment opportunities. Integration of MOFs on polymeric fibrous scaffolds will enable new applications in gas adsorption, membrane separation, catalysis, and toxic gas sensing. Here, we demonstrate a new synthesis route for growing MOFs on fibrous materials that achieves high MOF loadings, large surface areas and high adsorptive capacities. We find that a nanoscale coating of Al2O3 formed by atomic layer deposition (ALD) on the surface of nonwoven fiber mats facilitates nucleation of MOFs on the fibers throughout the mat. Functionality of MOFs is fully maintained after integration, and MOF crystals are well attached to the fibers. Breakthrough tests for HKUST‐1 MOFs [Cu3(BTC)2] on ALD‐coated polypropylene fibers reveal NH3 dynamic loadings up to 5.93 ± 0.20 mol/kg(MOF+fiber). Most importantly, this synthetic approach is generally applicable to a wide range of polymer fibers (e.g., PP, PET, cotton) and MOFs (e.g., HKUST‐1, MOF‐74, and UiO‐66).  相似文献   

5.
2D materials hold promising potential for novel gas separation. However, a lack of in‐plane pores and the randomly stacked interplane channels of these membranes still hinder their separation performance. In this work, ferrocene based‐MOFs (Zr‐Fc MOF) nanosheets, which contain abundant of in‐plane micropores, are synthesized as porous supports to fabricate Zr‐Fc MOF supported ionic liquid membrane (Zr‐Fc‐SILM) for highly efficient CO2 separation. The micropores of Zr‐Fc MOF nanosheets not only provide extra paths for CO2 transportation, and thus increase its permeance up to 145.15 GPU, but also endow the Zr‐Fc‐SILM with high selectivity (216.9) of CO2/N2 through the nanoconfinement effect, which is almost ten times higher than common porous polymer SILM. Furthermore, based on the photothermal‐responsive properties of Zr‐Fc MOF, the performance is further enhanced (35%) by light irradiation through a photothermal heating process. This provides a brand new way to design light facilitating gas separation membranes.  相似文献   

6.
Upcoming emission regulations order highly effective NOx‐reduction systems in lean‐burn engines requiring new catalytic materials and integrated control of the reduction process. Thus, new approaches for NOx‐reduction and its monitoring over an On‐Board‐Diagnostic (OBD) system are suggested throughout the globe. A promising attempt is the development of a catalytic system having an integrated NOx‐sensor, based on selective catalytic reduction process and impedance sensors. The study displays the results achieved both with a perovskite type of self‐regenerative catalyst functioning by H2‐reductant and with impedance NOx‐sensors. The catalysts were tested at the temperature range of 150 °C to 360 °C yielding NOx conversion rates of 92 % with high selectivity to N2. Impedance sensors having NiCr2O4‐ and NiO‐SE and PYSZ‐ and FYSZ‐electrolytes are developed and tested at 600 °C under lean atmosphere (5 vol. % O2). Better sensing behaviour towards NO and lower cross‐selectivity towards O2, CO, CO2 and CH4 have been observed with sensors having NiO‐SE.  相似文献   

7.
Abatement of chemical hazards using adsorptive metal‐organic frameworks (MOFs) attracts substantial attention, but material stability and crystal integration into functional systems remain key challenges. Herein, water‐stable, polymer fiber surface–oriented M–TCPP [M = Cu, Zn, and Co; H2TCPP = 5,10,15,20‐tetrakis(4‐carboxyphenyl)porphyrin] 2D MOF crystals are fabricated using a facile hydroxy double salt (HDS) solid‐source conversion strategy. For the first time, Cu–TCPP is formed from a solid source and confirmed to be highly adsorptive for NH3 and 2‐chloroethyl ethyl sulfide (CEES), a blistering agent simulant, in humid (80% relative humidity (RH)) conditions. Moreover, the solid HDS source is found as a unique new approach to control MOF thin‐film crystal orientation, thereby facilitating radially arranged MOF crystals on fibers. On a per unit mass of MOF basis in humid conditions, the MOF/fiber composite enhances NH3 adsorptive capacity by a factor of 3 compared to conventionally prepared MOF powders. The synthesis route extends to other MOF/fiber composite systems, therefore providing a new route for chemically protective materials.  相似文献   

8.
The Keggin‐type polyoxometalates (POMs) are effective catalysts for oxidative desulfurization (ODS) and confining these POMs in metal–organic frameworks (MOFs) is a promising strategy to improve their performances. Herein, postsynthetic modification of POMs confined in MOFs by adding thiourea creates more unsaturated metal sites as defects, promoting ODS catalytic activity. Additional modification by confining 1‐butyl‐3‐methyl imidazolium POMs in MOFs is performed to obtain higher ODS activity, owing to the affinity between electron‐rich thiophene‐based compounds and electrophilic imidazolium compounds. The ODS catalytic activities of four Zr‐MOF‐based composites (bottle around ship) including phosphomolybdate acid (PMA)/UiO‐66, [Bmim]3PMo12O40/UiO‐66, PMA/Thiourea/UiO‐66, and [Bmim]3PMo12O40/Thiourea/UiO‐66 are therefore investigated in detail. In order to explore the catalytic mechanism of these MOF composites, their microstructures and electronic structures are probed by various techniques such as X‐ray diffraction, thermogravimetric analysis, Fourier transform infrared, Raman, scanning electron microscope, transmission electron microscope, BET, X‐ray photoelectron spectroscopy, EPR, UV–vis, NMR spectra, and H2‐temperature‐programmed reduction. The results reveal that phosphomolybdate blues and imidazolium phosphomolybdate blues with different Mo5+/Mo6+ ratios with the Keggin structure are confined in defected UiO‐66 for all four composites. This approach can be applied to design and synthesize other POMs/MOFs composites as efficient catalysts.  相似文献   

9.
Direct use of metal–organic frameworks (MOFs) with robust pore structures, large surface areas, and high density of coordinatively unsaturated metal sites as electrochemical active materials is highly desirable (rather than using as templates and/or precursors for high‐temperature calcination), but this is practically hindered by the poor conductivity and low accessibility of active sites in the bulk form. Herein, a universal vapor‐phase method is reported to grow well‐aligned MOFs on conductive carbon cloth (CC) by using metal hydroxyl fluorides with diverse morphologies as self‐sacrificial templates. Specifically, by further partially on‐site generating active Co3S4 species from Co ions in the echinops‐like Co‐based MOF (EC‐MOF) through a controlled vulcanization approach, the resulting Co3S4/EC‐MOF hybrid exhibits much enhanced electrocatalytic performance toward the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), with overpotentials of 84 and 226 mV required to reach a current density of 10 mA cm?2, respectively. Density functional theory (DFT) calculations and experimental results reveal that the electron transfer between Co3S4 species and EC‐MOF can decrease the electron density of the Co d‐orbital, resulting in more electrocatalytically optimized adsorption properties for Co. This study will open up a new avenue for designing highly ordered MOF‐based surface active materials for various electrochemical energy applications.  相似文献   

10.
A new type of nitrogen dioxide (NO2) gas sensor based on copper phthalocyanine (CuPc) thin film transistors (TFTs) with a simple, low‐cost UV–ozone (UVO)‐treated polymeric gate dielectric is reported here. The NO2 sensitivity of these TFTs with the dielectric surface UVO treatment is ≈400× greater for [NO2] = 30 ppm than for those without UVO treatment. Importantly, the sensitivity is ≈50× greater for [NO2] = 1 ppm with the UVO‐treated TFTs, and a limit of detection of ≈400 ppb is achieved with this sensing platform. The morphology, microstructure, and chemical composition of the gate dielectric and CuPc films are analyzed by atomic force microscopy, grazing incident X‐ray diffraction, X‐ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy, revealing that the enhanced sensing performance originates from UVO‐derived hydroxylated species on the dielectric surface and not from chemical reactions between NO2 and the dielectric/semiconductor components. This work demonstrates that dielectric/semiconductor interface engineering is essential for readily manufacturable high‐performance TFT‐based gas sensors.  相似文献   

11.
Nitrogen dioxide (NO2) emission has severe impact on human health and the ecological environment and effective monitoring of NO2 requires the detection limit (limit of detection) of several parts‐per‐billion (ppb). All organic semiconductor‐based NO2 sensors fail to reach such a level. In this work, using an ion‐in‐conjugation inspired‐polymer (poly(3,3′‐diaminobenzidine‐squarine, noted as PDBS) as the sensory material, NO2 can be detected as low as 1 ppb, which is the lowest among all reported organic NO2 sensors. In addition, the sensor has high sensitivity, good reversibility, and long‐time stability with a period longer than 120 d. Theoretical calculations reveal that PDBS offers unreacted amine and zwitterionic groups, which can offer both the H‐bonding and ion‐dipole interaction to NO2. The moderate binding energies (≈0.6 eV) offer high sensitivity, selectivity as well as good reversibility. The results demonstrate that the ion‐in‐conjugation can be employed to greatly improve sensitivity and selectivity in organic gas sensors by inducing both H‐bonding and ion‐dipole attraction.  相似文献   

12.
A highly porous metal‐organic framework (MOF) incorporating two kinds of second building units (SBUs), i.e., dimeric paddlewheel (Zn2(COO)4) and tetrameric (Zn4(O)(CO2)6), is successfully assembled by the reaction of a tricarboxylate ligand with ZnII ion. Subsequently, single‐crystal‐to‐single‐crystal metal cation exchange using the constructed MOF is investigated, and the results show that CuII and CoII ions can selectively be introduced into the MOF without compromising the crystallinity of the pristine framework. This metal cation‐exchangeable MOF provides a useful platform for studying the metal effect on both gas adsorption and catalytic activity of the resulted MOFs. While the gas adsorption experiments reveal that CuII and CoII exchanged samples exhibit comparable CO2 adsorption capability to the pristine ZnII‐based MOF under the same conditions, catalytic investigations for the cycloaddition reaction of CO2 with epoxides into related carbonates demonstrate that ZnII‐based MOF affords the highest catalytic activity as compared with CuII and CoII exchanged ones. Molecular dynamic simulations are carried out to further confirm the catalytic performance of these constructed MOFs on chemical fixation of CO2 to carbonates. This research sheds light on how metal exchange can influence intrinsic properties of MOFs.  相似文献   

13.
A general one‐step in situ pyrolysis route for the construction of metal–organic frameworks encapsulating superparamagnetic γ‐Fe2O3 NPs dispersed in the confined cavities of MOFs homogeneously is described. The integration of γ‐Fe2O3 NPs or clusters into MOFs can endow these porous materials with superparamagnetic element. By the combination of the thermal stability of MOFs and pyrolysis of metal triacetylacetonate complex at matched conditions, the porous structure of MOFs are well maintained while the size‐induced superparamagnetic property of nano γ‐Fe2O3 is obtained. As a proof of concept, both the γ‐ Fe2O3@ZIF‐8 and γ‐Fe2O3@MIL‐53(Al) were successfully prepared, and the latter was chosen to demonstrate its potential drug delivery as a magnetic MOF.  相似文献   

14.
2D metal–organic frameworks (2D MOFs) are promising templates for the fabrication of carbon supported 2D metal/metal sulfide nanocomposites. Herein, controllable synthesis of a newly developed 2D Ni‐based MOF nanoplates in well‐defined rectangle morphology is first realized via a pyridine‐assisted bottom‐up solvothermal treatment of NiSO4 and 4,4′‐bipyridine. The thickness of the MOF nanoplates can be controlled to below 20 nm, while the lateral size can be tuned in a wide range with different amounts of pyridine. Subsequent pyrolysis treatment converts the MOF nanoplates into 2D free‐standing nitrogen‐doped Ni‐Ni3S2@carbon nanoplates. The obtained Ni‐Ni3S2 nanoparticles encapsulated in the N‐doped carbon matrix exhibits high electrocatalytic activity in oxygen evolution reaction. A low overpotential of 284.7 mV at a current density of 10 mA cm?2 is achieved in alkaline solution, which is among the best reported performance of substrate‐free nickel sulfides based nanomaterials.  相似文献   

15.
Precious metals such as palladium (Pd) and platinum (Pt) are marvelous materials in the fields of electronic and catalysis, but they are tapering day by day. Zr(IV)‐based metal–organic frameworks (MOFs) are competent for their recovery, notably in harsh environments, while the general powder form limits their practical application. Porous MOF‐based membranes with ultraefficient metal ion permeation, strong stability, and high selectivity are, therefore, strikingly preferred. Herein, a set of polymeric fibrous membranes incorporated with the UiO‐66 series are fabricated; their adsorption/desorption capabilities toward Pd(II) and Pt(IV) are evaluated from strongly acidic solutions; and the MOF–polymer compatibilities are investigated. Polyurethane (PU)/UiO‐66‐NH2 showed strong acid resistance and high chemical stability, which are attributable to strong π–π interactions between PU and MOF nanoparticles with a high configuration of energy. The as‐fabricated MOF membranes show extremely good adsorption/desorption performances without ruptures/coalitions of nanofibers or leak of MOF nanoparticles, and successfully display the efficacy in a gravity‐driven or even continuous‐flow system with good recycle performance and selectivity. The as‐fabricated MOF membranes set an example of potential MOF–polymer compatibility for practical applications.  相似文献   

16.
Hexagonal nickel‐organic framework (Ni‐MOF) [Ni(NO3)2·6H2O, 1,3,5‐benzenetricarboxylic acid, 4‐4′‐bipyridine] is fabricated through a one‐step solvothermal method. The {001} crystal plane is exposed to the largest hexagonal surface, which is an ideal structure for electron transport and ion diffusion. Compared with the surrounding rectangular crystal surface, the ion diffusion length through the {001} crystal plane is the shortest. In addition, the cross‐linked porous mesh structures growing on the {001} crystal plane strengthen the mixing with conductive carbon, inducing preferable conductivity, as well as increasing the area of ion contact and the number of active sites. These advantages enable the hexagonal Ni‐MOF to exhibit excellent electrochemical performance as supercapacitor electrode materials. In a three‐electrode cell, specific capacitance of hexagonal Ni‐MOF in the 3.0 m KOH electrolyte is 977.04 F g?1 and remains at the initial value of 92.34% after 5,000 cycles. When the hexagonal Ni‐MOF and activated carbon are assembled into aqueous devices, the electrochemical performance remains effective.  相似文献   

17.
Although chemoselective hydrogenation of unsaturated aldehydes is the major route to highly valuable industrially demanded unsaturated alcohols, it is still challenging, as the production of saturated aldehydes is more favorable over unsaturated alcohols from the view of thermodynamics. By combining the structural features of porous nanowires (NWs) and metal‐organic frameworks (MOFs), a unique class of porous Pt‐Ni NWs in situ encapsuled by MOFs (Pt‐Ni NWs@Ni/Fex‐MOFs) is designed to enhance the unsaturated alcohols selectivity in the cinnamaldehyde (CAL) hydrogenation. A detailed catalytic study shows that the porous Pt‐Ni NWs@Ni/Fex‐MOFs exhibit volcano‐type activity and selectivity in CAL hydrogenation as a function of Fe content. The optimized porous PtNi2.20 NWs@Ni/Fe4‐MOF is highly active and selective with 99.5% CAL conversion and 83.3% cinnamyl alcohol selectivity due to the confinement effect, appropriate thickness of MOF and its optimized electronic structure, and excellent durability with negligible activity and selectivity loss after five runs.  相似文献   

18.
The combination of novel materials with flexible electronic technology may yield new concepts of flexible electronic devices that effectively detect various biological chemicals to facilitate understanding of biological processes and conduct health monitoring. This paper demonstrates single‐ or multichannel implantable flexible sensors that are surface modified with conductive metal–organic frameworks (MOFs) such as copper‐MOF and cobalt‐MOF with large surface area, high porosity, and tunable catalysis capability. The sensors can monitor important nutriments such as ascorbicacid, glycine, l ‐tryptophan (l ‐Trp), and glucose with detection resolutions of 14.97, 0.71, 4.14, and 54.60 × 10?6 m , respectively. In addition, they offer sensing capability even under extreme deformation and complex surrounding environment with continuous monitoring capability for 20 d due to minimized use of biological active chemicals. Experiments using live cells and animals indicate that the MOF‐modified sensors are biologically safe to cells, and can detect l ‐Trp in blood and interstitial fluid. This work represents the first effort in integrating MOFs with flexible sensors to achieve highly specific and sensitive implantable electrochemical detection and may inspire appearance of more flexible electronic devices with enhanced capability in sensing, energy storage, and catalysis using various properties of MOFs.  相似文献   

19.
The exploration of new porous hybrid materials is of great importance because of their unique properties and promising applications in separation of materials, catalysis, etc. Herein, for the first time, by integration of metal–organic frameworks (MOFs) and covalent organic frameworks (COFs), a new type of MOF@COF core–shell hybrid material, i.e., NH2‐MIL‐68@TPA‐COF, with high crystallinity and hierarchical pore structure, is synthesized. As a proof‐of‐concept application, the obtained NH2‐MIL‐68@TPA‐COF hybrid material is used as an effective visible‐light‐driven photocatalyst for the degradation of rhodamine B. The synthetic strategy in this study opens up a new avenue for the construction of other MOF–COF hybrid materials, which could have various promising applications.  相似文献   

20.
Exploring novel multifunctional rare earth materials is very important because these materials have fundamental interests, such as new structural facts and connecting modes, as well as potential technological applications, including optics, magnetic properties, sorption, and catalytic behaviors. Especially, employing these nanomaterials for sensing or catalytic reactions is still very challenging. Herein, a new superstable, anionic terbium‐metal–organic‐framework, [H2N(CH3)2][Tb(cppa)2(H2O)2], (China Three Gorges University ( CTGU‐1 ), H2cppa = 5‐(4‐carboxyphenyl)picolinic acid), is successfully prepared, which can be used as a turn‐on, highly‐sensitive fluorescent sensor to detect Eu3+ and Dy3+, with a detection limitation of 5 × 10?8 and 1 × 10?4m in dimethylformamide, respectively. This result represents the first example of lanthanide‐metal–organic‐frameworks (Ln‐MOF) that can be employed as a discriminative fluorescent probe to recognize Eu3+ and Dy3+. In addition, through ion exchanging at room temperature, Ag(I) can be readily reduced in situ and embedded in the anionic framework, which leads to the formation of nanometal‐particle@Ln‐MOF composite with uniform size and distribution. The as‐prepared Ag@ CTGU‐1 shows remarkable catalytic performance to reduce 4‐nitrophenol, with a reduction rate constant κ as large as 2.57 × 10?2 s?1; almost the highest value among all reported noble‐metal‐nanoparticle@MOF composites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号