首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2D materials are considered as intriguing building blocks for next‐generation optoelectronic devices. However, their photoresponse performance still needs to be improved for practical applications. Here, ultrasensitive 2D phototransistors are reported employing chemical vapor deposition (CVD)‐grown 2D Bi2O2Se transferred onto silicon substrates with a noncorrosive transfer method. The as‐transferred Bi2O2Se preserves high quality in contrast to the serious quality degradation in hydrofluoric‐acid‐assisted transfer. The phototransistors show a responsivity of 3.5 × 104 A W?1, a photoconductive gain of more than 104, and a time response in the order of sub‐millisecond. With back gating of the silicon substrate, the dark current can be reduced to several pA. This yields an ultrahigh sensitivity with a specific detectivity of 9.0 × 1013 Jones, which is one of the highest values among 2D material photodetectors and two orders of magnitude higher than that of other CVD‐grown 2D materials. The high performance of the phototransistor shown here together with the developed unique transfer technique are promising for the development of novel 2D‐material‐based optoelectronic applications as well as integrating with state‐of‐the‐art silicon photonic and electronic technologies.  相似文献   

2.
Patterning of high‐mobility 2D semiconducting materials with unique layered structures and superb electronic properties offers great potential for batch fabrication and integration of next‐generation electronic and optoelectronic devices. Here, a facile approach is used to achieve accurate patterning of 2D high‐mobility semiconducting Bi2O2Se crystals using dilute H2O2 and protonic mixture acid as efficient etchants. The 2D Bi2O2Se crystal after chemical etching maintains a high Hall mobility of over 200 cm2 V?1 s?1 at room temperature. Centimeter‐scale well‐ordered arrays of 2D Bi2O2Se with tailorable configurations are readily obtained. Furthermore, integrated photodetectors based on 2D Bi2O2Se arrays are fabricated, exhibiting excellent air stability and high photoresponsivity of ≈2000 A W?1 at 532 nm. These results are one step towards the practical application of ultrathin 2D integrated digital and optoelectronic circuits.  相似文献   

3.
2D materials exhibit superior properties in electronic and optoelectronic fields. The wide demand for high-performance optoelectronic devices promotes the exploration of diversified 2D materials. Recently, 2D covalent organic frameworks (COFs) have emerged as next-generation layered materials with predesigned π-electronic skeletons and highly ordered topological structures, which are promising for tailoring their optoelectronic properties. However, COFs are usually produced as solid powders due to anisotropic growth, making them unreliable to integrate into devices. Here, by selecting tetraphenylethylene monomers with photoelectric activity, elaborately designed photosensitive 2D-COFs with highly ordered donor-acceptor topologies are in situ synthesized on graphene, ultimately forming COF-graphene heterostructures. Ultrasensitive photodetectors are successfully fabricated with the COFETBC–TAPT-graphene heterostructure and exhibited an excellent overall performance with a photoresponsivity of ≈3.2 × 107 A W−1 at 473 nm and a time response of ≈1.14 ms. Moreover, due to the high surface area and the polarity selectivity of COFs, the photosensing properties of the photodetectors can be reversibly regulated by specific target molecules. The research provides new strategies for building advanced functional devices with programmable material structures and diversified regulation methods, paving the way for a generation of high-performance applications in optoelectronics and many other fields.  相似文献   

4.
Molybdenum disulfide (MoS2), a typical 2D metal dichalcogenide (2DMD), has exhibited tremendous potential in optoelectronic device applications, especially in photodetection. However, due to the weak light absorption of planar mono‐/multilayers, limited cutoff wavelength edge, and lack of high‐quality junctions, most reported MoS2‐based photodetectors show undesirable performance. Here, a structurized 3D heterojunction of RGO–MoS2/pyramid Si is demonstrated via a simple solution‐processing method. Owing to the improved light absorption by the pyramid structure, the narrowed bandgap of the MoS2 by the imperfect crystallinity, and the enhanced charge separation/transportation by the inserted reduced graphene oxide (RGO), the assembled photodetector exhibits excellent performance in terms of a large responsivity of 21.8 A W?1, extremely high detectivity up to 3.8 × 1015 Jones (Jones = cm Hz1/2 W?1) and ultrabroad spectrum response ranging from 350 nm (ultraviolet) to 4.3 µm (midwave infrared). These device parameters represent the best results for MoS2‐based self‐driven photodetectors, and the detectivity value sets a new record for the 2DMD‐based photodetectors reported thus far. Prospectively, the design of novel 3D heterojunction can be extended to other 2DMDs, opening up the opportunities for a host of high‐performance optoelectronic devices.  相似文献   

5.
2D hybrid perovskites have shown great promise in the photodetection field, due to their intriguing attributes stemming from unique structural architectures. However, the great majority of detectors based on this 2D system possess a relatively low response speed (≈ms), making it extremely urgent to develop new candidates for superfast photodetection. Here, a new organic–inorganic hybrid perovskite, (PA)2(FA)Pb2I7 (EFA, where PA is n‐pentylaminium and FA is formamidine), which features the 2D Ruddlesden–Popper type perovskite framework that is composed of the corner‐sharing PbI6 octahedra is reported. Significantly, photodetectors fabricated on highly oriented thin films, which exhibit a perfect orientation parallel to 2D inorganic perovskite layers, exhibit a superfast response time up to ≈2.54 ns. To the best of the knowledge, this figure‐of‐merit catches up with that of the top‐ranking commercial materials, and sets a new record for 2D hybrid perovskite photodetectors. Moreover, extremely high photodetectivity (≈1.73 × 1014 Jones, under an incident power intensity of ≈46 µW cm?2), considerable switching ratios (>103), and low dark current (≈10 pA) are also achieved in the detector, indicating its great potential for high‐efficiency photodetection. These results shed light on the possibilities to explore new 2D candidates for assembling future high‐performance optoelectronic devices.  相似文献   

6.
Photodetection over a broad spectral range is crucial for optoelectronic applications such as sensing, imaging, and communication. Herein, a high‐performance ultra‐broadband photodetector based on PdSe2 with unique pentagonal atomic structure is reported. The photodetector responds from visible to mid‐infrared range (up to ≈4.05 µm), and operates stably in ambient and at room temperature. It promises improved applications compared to conventional mid‐infrared photodetectors. The highest responsivity and external quantum efficiency achieved are 708 A W?1 and 82 700%, respectively, at the wavelength of 1064 nm. Efficient optical absorption beyond 8 µm is observed, indicating that the photodetection range can extend to longer than 4.05 µm. Owing to the low crystalline symmetry of layered PdSe2, anisotropic properties of the photodetectors are observed. This emerging material shows potential for future infrared optoelectronics and novel devices in which anisotropic properties are desirable.  相似文献   

7.
2D planar structures of nonlayered wide‐bandgap semiconductors enable distinguished electronic properties, desirable short wavelength emission, and facile construction of 2D heterojunction without lattice match. However, the growth of ultrathin 2D nonlayered materials is limited by their strong covalent bonded nature. Herein, the synthesis of ultrathin 2D nonlayered CuBr nanosheets with a thickness of about 0.91 nm and an edge size of 45 µm via a controllable self‐confined chemical vapor deposition method is described. The enhanced spin‐triplet exciton (Zf, 2.98 eV) luminescence and polarization‐enhanced second‐harmonic generation based on the 2D CuBr flakes demonstrate the potential of short‐wavelength luminescent applications. Solar‐blind and self‐driven ultraviolet (UV) photodetectors based on the as‐synthesized 2D CuBr flakes exhibit a high photoresponsivity of 3.17 A W?1, an external quantum efficiency of 1126%, and a detectivity (D*) of 1.4 × 1011 Jones, accompanied by a fast rise time of 32 ms and a decay time of 48 ms. The unique nonlayered structure and novel optical properties of the 2D CuBr flakes, together with their controllable growth, make them a highly promising candidate for future applications in short‐wavelength light‐emitting devices, nonlinear optical devices, and UV photodetectors.  相似文献   

8.
2D lead iodide (PbI2) is attracting great interest due to its great potential in the application of UV photodetectors. In this work, a facile solution‐based method is developed to synthesize ultraflat PbI2 nanoflakes for high‐performance UV photodetectors. By maintaining at proximate room temperature and adding an evaporation suppression solvent for slow‐rate crystal growth, high‐quality PbI2 nanoflakes with an ultraflat surface are obtained. The UV photodetectors based on 2D PbI2 nanoflakes exhibit a high photoresponsivity of 0.51 A W?1, a high detectivity of 4.0 × 1010 Jones, a high external quantum efficiency (EQE) of 168.9%, and a rapid response speed including a rise time of 14.1 ms and a decay time of 31.0 ms. The balanced and excellent photodetector performance of these devices paves the road for practical UV photodetection based on 2D PbI2 nanoflakes.  相似文献   

9.
A facile methodology for the large‐scale production of layer‐controlled MoS2 layers on an inexpensive substrate involving a simple coating of single source precursor with subsequent roll‐to‐roll‐based thermal decomposition is developed. The resulting 50 cm long MoS2 layers synthesized on Ni foils possess excellent long‐range uniformity and optimum stoichiometry. Moreover, this methodology is promising because it enables simple control of the number of MoS2 layers by simply adjusting the concentration of (NH4)2MoS4. Additionally, the capability of the MoS2 for practical applications in electronic/optoelectronic devices and catalysts for hydrogen evolution reaction is verified. The MoS2‐based field effect transistors exhibit unipolar n‐channel transistor behavior with electron mobility of 0.6 cm2 V?1 s?1 and an on‐off ratio of ≈10³. The MoS2‐based visible‐light photodetectors are fabricated in order to evaluate their photoelectrical properties, obtaining an 100% yield for active devices with significant photocurrents and extracted photoresponsivity of ≈22 mA W?1. Moreover, the MoS2 layers on Ni foils exhibit applicable catalytic activity with observed overpotential of ≈165 mV and a Tafel slope of 133 mV dec?1. Based on these results, it is envisaged that the cost‐effective methodology will trigger actual industrial applications, as well as novel research related to 2D semiconductor‐based multifaceted applications.  相似文献   

10.
Silicon‐based electronic devices, especially graphene/Si photodetectors (Gr/Si PDs), have triggered tremendous attention due to their simple structure and flexible integration of the Schottky junction. However, due to the relatively poor light–matter interaction and mobility of silicon, these Gr/Si PDs typically suffer an inevitable compromise between photoresponsivity and response speed. Herein, a novel strategy for coupling 2D In2S3 with Gr/Si PDs is demonstrated. The introduction of the double‐heterojunction design not only strengthens the light absorption of graphene/Si but also combines the advantages of the photogating effect and photovoltaic effect, which suppresses the dark current, accelerates the separation of photogenerated carriers, and brings photoconductive gain. As a result, In2S3/graphene/Si devices present an ultrahigh photoresponsivity of 4.53 × 104 A W?1 and fast response speed less than 40 µs, simultaneously. These parameters are an order of magnitude higher than pristine Gr/Si PDs and among the best values compared with reported 2D materials/Si heterojunction PDs. Furthermore, the In2S3/graphene/Si PD expresses outstanding long‐term stability, with negligible performance degradation even after 1 month in air or 1000 cycles of operation. These findings highlight a simple and novel strategy for constructing high‐sensitivity and ultrafast Gr/Si PDs for further optoelectronic applications.  相似文献   

11.
Halide perovskites have high light absorption coefficients, long charge carrier diffusion lengths, intense photoluminescence, and slow rates of non‐radiative charge recombination. Thus, they are attractive photoactive materials for developing high‐performance optoelectronic devices. These devices are also cheap and easy to be fabricated. To realize the optimal performances of halide perovskite‐based optoelectronic devices (HPODs), perovskite photoactive layers should work effectively with other functional materials such as electrodes, interfacial layers and encapsulating films. Conventional two‐dimensional (2D) materials are promising candidates for this purpose because of their unique structures and/or interesting optoelectronic properties. Here, we comprehensively summarize the recent advancements in the applications of conventional 2D materials for halide perovskite‐based photodetectors, solar cells and light‐emitting diodes. The examples of these 2D materials are graphene and its derivatives, mono‐ and few‐layer transition metal dichalcogenides (TMDs), graphdiyne and metal nanosheets, etc. The research related to 2D nanostructured perovskites and 2D Ruddlesden–Popper perovskites as efficient and stable photoactive layers is also outlined. The syntheses, functions and working mechanisms of relevant 2D materials are introduced, and the challenges to achieving practical applications of HPODs using 2D materials are also discussed.  相似文献   

12.
Low-symmetry 2D materials with unique anisotropic optical and optoelectronic characteristics have attracted a lot of interest in fundamental research and manufacturing of novel optoelectronic devices. Exploring new and low-symmetry narrow-bandgap 2D materials will be rewarding for the development of nanoelectronics and nano-optoelectronics. Herein, sulfide niobium (NbS3), a novel transition metal trichalcogenide semiconductor with low-symmetry structure, is introduced into a narrowband 2D material with strong anisotropic physical properties both experimentally and theoretically. The indirect bandgap of NbS3 with highly anisotropic band structures slowly decreases from 0.42 eV (monolayer) to 0.26 eV (bulk). Moreover, NbS3 Schottky photodetectors have excellent photoelectric performance, which enables fast photoresponse (11.6 µs), low specific noise current (4.6 × 10−25 A2 Hz−1), photoelectrical dichroic ratio (1.84) and high-quality reflective polarization imaging (637 nm and 830 nm). A room-temperature specific detectivity exceeding 107 Jones can be obtained at the wavelength of 3 µm. These excellent unique characteristics will make low-symmetry narrow-bandgap 2D materials become highly competitive candidates for future anisotropic optical investigations and mid-infrared optoelectronic applications.  相似文献   

13.
2D materials hold great potential for designing novel electronic and optoelectronic devices. However, 2D material can only absorb limited incident light. As a representative 2D semiconductor, monolayer MoS2 can only absorb up to 10% of the incident light in the visible, which is not sufficient to achieve a high optical‐to‐electrical conversion efficiency. To overcome this shortcoming, a “gap‐mode” plasmon‐enhanced monolayer MoS2 fluorescent emitter and photodetector is designed by squeezing the light‐field into Ag shell‐isolated nanoparticles–Au film gap, where the confined electromagnetic field can interact with monolayer MoS2. With this gap‐mode plasmon‐enhanced configuration, a 110‐fold enhancement of photoluminescence intensity is achieved, exceeding values reached by other plasmon‐enhanced MoS2 fluorescent emitters. In addition, a gap‐mode plasmon‐enhanced monolayer MoS2 photodetector with an 880% enhancement in photocurrent and a responsivity of 287.5 A W?1 is demonstrated, exceeding previously reported plasmon‐enhanced monolayer MoS2 photodetectors.  相似文献   

14.
Inverse photoresponse is discovered from phototransistors based on molybdenum disulfide (MoS2). The devices are capable of detecting photons with energy below the bandgap of MoS2. Under the illumination of near‐infrared (NIR) light at 980 and 1550 nm, negative photoresponses with short response time (50 ms) are observed for the first time. Upon visible‐light illumination, the phototransistors exhibit positive photoresponse with ultrahigh responsivity on the order of 104–105 A W?1 owing to the photogating effect and charge trapping mechanism. Besides, the phototransistors can detect a weak visible‐light signal with effective optical power as low as 17 picowatts (pW). A thermally induced photoresponse mechanism, the bolometric effect, is proposed as the cause of the negative photocurrent in the NIR regime. The thermal energy of the NIR radiation is transferred to the MoS2 crystal lattice, inducing lattice heating and resistance increase. This model is experimentally confirmed by low‐temperature electrical measurements. The bolometric coefficient calculated from the measured transport current change with temperature is ?33 nA K?1. These findings offer a new approach to develop sub‐bandgap photodetectors and other novel optoelectronic devices based on 2D layered materials.  相似文献   

15.
The combination of graphene with semiconductor materials in heterostructure photodetectors enables amplified detection of femtowatt light signals using micrometer‐scale electronic devices. Presently, long‐lived charge traps limit the speed of such detectors, and impractical strategies, e.g., the use of large gate‐voltage pulses, have been employed to achieve bandwidths suitable for applications such as video‐frame‐rate imaging. Here, atomically thin graphene–WS2 heterostructure photodetectors encapsulated in an ionic polymer are reported, which are uniquely able to operate at bandwidths up to 1.5 kHz whilst maintaining internal gain as large as 106. Highly mobile ions and the nanometer‐scale Debye length of the ionic polymer are used to screen charge traps and tune the Fermi level of the graphene over an unprecedented range at the interface with WS2. Responsivity R = 106 A W?1 and detectivity D* = 3.8 × 1011 Jones are observed, approaching that of single‐photon counters. The combination of both high responsivity and fast response times makes these photodetectors suitable for video‐frame‐rate imaging applications.  相似文献   

16.
2D transition metal dichalcogenides (TMDCs) have attracted considerable attention due to their impressively high performance in optoelectronic devices. However, efficient infrared (IR) photodetection has been significantly hampered because the absorption wavelength range of most TMDCs lies in the visible spectrum. In this regard, semiconducting 2D MoTe2 can be an alternative choice owing to its smaller band gap ≈1 eV from bulk to monolayer and high carrier mobility. Here, a MoTe2/graphene heterostructure photodetector is demonstrated for efficient near‐infrared (NIR) light detection. The devices achieve a high responsivity of ≈970.82 A W?1 (at 1064 nm) and broadband photodetection (visible‐1064 nm). Because of the effective photogating effect induced by electrons trapped in the localized states of MoTe2, the devices demonstrate an extremely high photoconductive gain of 4.69 × 108 and detectivity of 1.55 × 1011 cm Hz1/2 W?1. Moreover, flexible devices based on the MoTe2/graphene heterostructure on flexible substrate also retains a good photodetection ability after thousands of times bending test (1.2% tensile strain), with a high responsivity of ≈60 A W?1 at 1064 nm at V DS = 1 V, which provides a promising platform for highly efficient, flexible, and low cost broadband NIR photodetectors.  相似文献   

17.
A continuing trend of miniaturized and flexible electronics/optoelectronic calls for novel device architectures made by compatible fabrication techniques. However, traditional layer‐to‐layer structures cannot satisfy such a need. Herein, a novel monolithic optoelectronic device fabricated by a mask‐free laser direct writing method is demonstrated in which in situ laser induced graphene‐like materials are employed as lateral electrodes for flexible ZnS/SnO2 ultraviolet photodetectors. Specifically, a ZnS/SnO2 thin film comprised of heterogeneous ZnS/SnO2 nanoparticles is first coated on polyimide (PI) sheets by a solution process. Then, CO2 laser irradiation ablates designed areas of the ZnS/SnO2 thin film and converts the underneath PI into highly conductive graphene as the lateral electrodes for the monolithic photodetectors. This in situ growth method provides good interfaces between the graphene electrodes and the semiconducting ZnS/SnO2 resulting in high optoelectronic performance. The lateral electrode structure reduces total thickness of the devices, thus minimizing the strain and improving flexibility of the photodetectors. The demonstrated lithography‐free monolithic fabrication is a simple and cost‐effective method, showing a great potential for developement into roll‐to‐roll manufacturing of flexible electronics.  相似文献   

18.
2D halide semiconductors, a new family of 2D materials in addition to transition metal dichalcogenides, present ultralow dark current and high light conversion yield, which hold great potential in photoconductive detectors. Herein, a facile aqueous solution method is developed for the preparation of large‐scale 2D lead dihalide nanosheets (PbF2‐xIx). High‐performance UV photodetectors are successfully implemented based on 2D PbF2‐xIx nanosheets. By modulating the components of halogens, the bandgap of PbF2‐xIx nanosheets can be tuned to meet varied detection spectra. The photoresponse dependence on incident power density, wavelength, detection environment, and temperature are systematically studied to investigate their detection mechanism. For PbI2 photodetectors, they are dominantly driven by a photoconduction mechanism and show a fast response speed and a low noise current density. A high normalized detectivity of 1.5 × 1012 Jones and an ION/IOFF ratio up to 103 are reached. On the other hand, PbFI photodetectors demonstrate a photogating mechanism mediated by trap states showing high responsivity. The novel 2D halide materials with wide bandgaps, superior detection performance, and facile synthesis process can enrich the Van der Waals solids family and hold great potential for a wide variety of applications in advanced optoelectronics.  相似文献   

19.
2D van der Waals (vdWs) heterostructures exhibit intriguing optoelectronic properties in photodetectors, solar cells, and light‐emitting diodes. In addition, these materials have the potential to be further extended to optical memories with promising broadband applications for image sensing, logic gates, and synaptic devices for neuromorphic computing. In particular, high programming voltage, high off‐power consumption, and circuital complexity in integration are primary concerns in the development of three‐terminal optical memory devices. This study describes a multilevel nonvolatile optical memory device with a two‐terminal floating‐gate field‐effect transistor with a MoS2/hexagonal boron nitride/graphene heterostructure. The device exhibits an extremely low off‐current of ≈10?14 A and high optical switching on/off current ratio of over ≈106, allowing 18 distinct current levels corresponding to more than four‐bit information storage. Furthermore, it demonstrates an extended endurance of over ≈104 program–erase cycles and a long retention time exceeding 3.6 × 104 s with a low programming voltage of ?10 V. This device paves the way for miniaturization and high‐density integration of future optical memories with vdWs heterostructures.  相似文献   

20.
Recently, anisotropic 2D materials, such as black phosphorus and rhenium disulfides (ReS2), have attracted a lot attention because of their unique applications on electronics and optoelectronics. In this work, the direct growth of high‐quality ReS2 atomic layers and nanoribbons has been demonstrated by using chemical vapor deposition (CVD) method. A possible growth mechanism is proposed according to the controlled experiments. The CVD ReS2‐based filed‐effect transistors (FETs) show n‐type semiconducting behavior with a current on/off ratio of ≈106 and a charge carrier mobility of ≈9.3 cm2 Vs−1. These results suggested that the quality of CVD grown ReS2 is comparable to mechanically exfoliated ReS2, which is also further supported by atomic force microscopy imaging, high‐resolution transmission electron microscopy imaging and thickness‐dependent Raman spectra. The study here indicates that CVD grown ReS2 may pave the way for the large‐scale fabrication of ReS2‐based high‐performance optoelectronic devices, such as anisotropic FETs and polarization detection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号