首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Can photodetectors be transparent and operate in self-powered mode? Is it possible to achieve invisible electronics, independent of the external power supply system, for on-site applications? Here, a ZnO/NiO heterojunction-based high-functional transparent ultraviolet (UV) photodetector operating in the self-powered photovoltaic mode with outstanding responsivity and detectivity values of 6.9 A W−1 and 8.0 × 1012 Jones, respectively, is reported. The highest IUV/Idark value of 8.9 × 104 is attained at a wavelength of 385 nm, together with a very small dark current value of 9.15 × 10−12 A. A large-scale sputtering method is adopted to deposit the heterostructure of n-ZnO and p-NiO sequentially. This deposition instinctively forms an abrupt junction, resulting in a high-quality heterojunction device. Moreover, developing a ZnO/NiO-heterojunction–based 4 × 5 matrix array with an output photovoltage of 4.5 V is preferred for integrating photodetectors into sensing and imaging systems. This transparent UV photodetector exhibits the fastest photo-response time (83 ns) reported for array configurations, which is achieved using an exciton-induced photovoltage based on a neutral donor–bound exciton. Overall, this study provides a simple method for achieving a high-performance large-scale transparent UV photodetector with a self-powered array configuration.  相似文献   

2.
Strong near‐surface electromagnetic field formed by collective oscillation of electrons on Cu nanostructure a shows a strong dependence on geometry, offering a promising approach to boost the light absorption of ZnO photoactive layers with enhanced plasmon scattering. Here, a facile way to fabricate UV photodetectors with tunable configuration of the self‐assembled Cu nanostructures on ZnO thin films is reported. The incident lights are effectively confined in ZnO photoactive layers with the existence of the uplayer Cu nanostructures, and the interdiffusion of Cu atoms during fabrication of the Cu nanostructures can improve the carrier transfer in ZnO thin films. The optical properties of the hybrid architectures are successfully tailored over a control of the geometric evolution of the Cu nanostructures, resulting in significantly enhanced photocurrent and responsivity of 2.26 mA and 234 A W?1 under a UV light illumination of 0.62 mW cm?2 at 10 V, respectively. The photodetectors also exhibit excellent reproducibility, stability, and UV–visible rejection ratio (R370 nm/R500 nm) of ≈370, offering an approach of high‐performance UV photodetectors for practical applications.  相似文献   

3.
Graphene/ZnO nanocomposites photodetectors hold great potential for UV detection because of the combination of photosensitive ZnO and high electron-mobility graphene. In this paper, graphene oxide (GO)/ZnO nanorods photoconductive photodetector with seed layer of GO and ZnO nanocrystals (NCs) hybrids is fabricated via a low-cost solution process. Uniform and oriented GO/ZnO nanorods have been obtained due to the positive role of GO in the growth process of ZnO nanorods, which gives rise to less light scattering and thereby stronger absorption and enhanced photocurrent. When the growth time is 1 h, the optimum photocurrent of GO/ZnO nanorods is about 9.4 times than pure ZnO nanorods, meanwhile, the corresponding detectivity reaches 7.17?×?1011 cm Hz1/2 W?1. In addition, owing to the high carrier mobility of graphene, the response time t 90 of GO/ZnO photodetector beneficially decreases to ~1 s, which is much faster than many other GO/ZnO hybrid photodetectors.  相似文献   

4.
Ultraviolet (UV) photodetectors based on ZnO nanostructure/graphene (Gr) hybrid‐channel field‐effect transistors (FETs) are investigated under illumination at various incident photon intensities and wavelengths. The time‐dependent behaviors of hybrid‐channel FETs reveal a high sensitivity and selectivity toward the near‐UV region at the wavelength of 365 nm. The devices can operate at low voltage and show excellent selectivity, high responsivity (RI ), and high photoconductive gain (G). The change in the transfer characteristics of hybrid‐channel FETs under UV light illumination allows to detect both photovoltage and photocurrent. The shift of the Dirac point (V Dirac) observed during UV exposure leads to a clearer explanation of the response mechanism and carrier transport properties of Gr, and this phenomenon permits the calculation of electron concentration per UV power density transferred from ZnO nanorods and ZnO nanoparticles to Gr, which is 9 × 1010 and 4 × 1010 per mW, respectively. The maximum values of RI and G infer from the fitted curves of RI and G versus UV intensity are 3 × 105 A W?1 and 106, respectively. Therefore, the hybrid‐channel FETs studied herein can be used as UV sensing devices with high performance and low power consumption, opening up new opportunities for future optoelectronic devices.  相似文献   

5.
2D halide semiconductors, a new family of 2D materials in addition to transition metal dichalcogenides, present ultralow dark current and high light conversion yield, which hold great potential in photoconductive detectors. Herein, a facile aqueous solution method is developed for the preparation of large‐scale 2D lead dihalide nanosheets (PbF2‐xIx). High‐performance UV photodetectors are successfully implemented based on 2D PbF2‐xIx nanosheets. By modulating the components of halogens, the bandgap of PbF2‐xIx nanosheets can be tuned to meet varied detection spectra. The photoresponse dependence on incident power density, wavelength, detection environment, and temperature are systematically studied to investigate their detection mechanism. For PbI2 photodetectors, they are dominantly driven by a photoconduction mechanism and show a fast response speed and a low noise current density. A high normalized detectivity of 1.5 × 1012 Jones and an ION/IOFF ratio up to 103 are reached. On the other hand, PbFI photodetectors demonstrate a photogating mechanism mediated by trap states showing high responsivity. The novel 2D halide materials with wide bandgaps, superior detection performance, and facile synthesis process can enrich the Van der Waals solids family and hold great potential for a wide variety of applications in advanced optoelectronics.  相似文献   

6.
2D planar structures of nonlayered wide‐bandgap semiconductors enable distinguished electronic properties, desirable short wavelength emission, and facile construction of 2D heterojunction without lattice match. However, the growth of ultrathin 2D nonlayered materials is limited by their strong covalent bonded nature. Herein, the synthesis of ultrathin 2D nonlayered CuBr nanosheets with a thickness of about 0.91 nm and an edge size of 45 µm via a controllable self‐confined chemical vapor deposition method is described. The enhanced spin‐triplet exciton (Zf, 2.98 eV) luminescence and polarization‐enhanced second‐harmonic generation based on the 2D CuBr flakes demonstrate the potential of short‐wavelength luminescent applications. Solar‐blind and self‐driven ultraviolet (UV) photodetectors based on the as‐synthesized 2D CuBr flakes exhibit a high photoresponsivity of 3.17 A W?1, an external quantum efficiency of 1126%, and a detectivity (D*) of 1.4 × 1011 Jones, accompanied by a fast rise time of 32 ms and a decay time of 48 ms. The unique nonlayered structure and novel optical properties of the 2D CuBr flakes, together with their controllable growth, make them a highly promising candidate for future applications in short‐wavelength light‐emitting devices, nonlinear optical devices, and UV photodetectors.  相似文献   

7.
Ultraviolet (UV) photodetectors based on pure zinc oxide (ZnO) and Ag-doped ZnO (Ag:ZnO) thin films with different Ag doping contents (0.05, 0.15, 0.65, 1.30 and 2.20 %) have been prepared by sol–gel technique. Photoresponse characteristics of the prepared detectors have been studied for UV radiation of λ = 365 nm and intensity = 24 μW/cm2. The Ag:ZnO thin film-based photodetector having an optimum amount of 0.15 at. wt% Ag dopant exhibits a high photoconductive gain (K = 1.32 × 103) with relatively fast recovery (T 37 % = 600 ms) and minimal persistence in comparison to other prepared photodetectors. The incorporation of Ag dopant (≤0.15 %) at Zn lattice sites (Agzn) in ZnO creates acceptor levels in the forbidden gap, thereby reducing the value of dark current. Upon illumination with UV radiation, the photogenerated holes recombine with the captured electrons at the Agzn sites. The photogenerated electrons increase the concentration of conduction electrons, thereby giving an enhanced photoresponse for Ag:ZnO photodetector (0.15 % Ag). At higher dopant concentration (≥0.65 %), Ag incorporated at the interstitial sites of ZnO leads to the formation of deep energy levels below the conduction band along with increase in oxygen-related defects, thereby giving higher values of dark current. The incorporation of Ag at interstitial sites results in degradation of photoresponse along with the appearance of persistence in recovery of the photodetector in the absence of UV radiation.  相似文献   

8.
2D wide‐bandgap semiconductors demonstrate great potential in fabricating solar‐blind ultraviolet (SBUV) photodetectors. However, the low responsivity of 2D solar‐blind photodetectors still limits their practical applications. Here, high‐responsivity solar‐blind photodetectors are achieved based on 2D bismuth oxychloride (BiOCl) flakes. The 2D BiOCl photodetectors exhibit a responsivity up to 35.7 A W?1 and a specific detectivity of 2.2 × 1010 Jones under 250 nm illumination with 17.8 µW cm?2 power density. In particular, the enhanced photodetective performances are demonstrated in BiOCl photodetectors with increasing ambient temperature. Surprisingly, their responsivity can reach 2060 A W?1 at 450 K under solar‐blind light illumination, maybe owing to the formation of defective BiOCl grains evidenced by in situ transmission electron microscopy. The high responsivity throughout the solar‐blind range indicates that 2D BiOCl is a promising candidate for SBUV detection.  相似文献   

9.
Fabrication of a high‐temperature deep‐ultraviolet photodetector working in the solar‐blind spectrum range (190–280 nm) is a challenge due to the degradation in the dark current and photoresponse properties. Herein, β‐Ga2O3 multi‐layered nanobelts with (l00) facet‐oriented were synthesized, and were demonstrated for the first time to possess excellent mechanical, electrical properties and stability at a high temperature inside a TEM studies. As‐fabricated DUV solar‐blind photodetectors using (l00) facet‐oriented β‐Ga2O3 multi‐layered nanobelts demonstrated enhanced photodetective performances, that is, high sensitivity, high signal‐to‐noise ratio, high spectral selectivity, high speed, and high stability, importantly, at a temperature as high as 433 K, which are comparable to other reported semiconducting nanomaterial photodetectors. In particular, the characteristics of the photoresponsivity of the β‐Ga2O3 nanobelt devices include a high photoexcited current (>21 nA), an ultralow dark current (below the detection limit of 10?14 A), a fast time response (<0.3 s), a high Rλ (≈851 A/W), and a high EQE (~4.2 × 103). The present fabricated facet‐oriented β‐Ga2O3 multi‐layered nanobelt based devices will find practical applications in photodetectors or optical switches for high‐temperature environment.  相似文献   

10.
Organic–inorganic hybrid perovskite (OIHP) photodetectors have presented unprecedented device performance mainly owing to outstanding material properties. However, the solution‐processed OIHP polycrystalline thin films with defective surface and grain boundaries always impair the key parameter of photodetectors. Herein, a nonfullerene passivation layer exhibits more efficient passivation for OIHP materials to dramatically reduce the trap density of state, yielding a dark current as low as 2.6 × 10?8 A cm?2 under ?0.1 V. In addition, the strong absorption in near‐infrared (NIR) region of nonfullerene/C60 heterojunction broadens the detectable range to over 900 nm by effective charge transport, ultimately leading to a specific detectivity of 1.45 × 1012 and 7.37 × 1011 cm Hz1/2 W?1 at 650 and 820 nm, respectively. Encouragingly, the response speed of 27 ns is obtained at 0.6 mm2 of device area by removing constrain from the resistance–capacitance constant. Moreover, the prominent practical application of the photodetector is demonstrated in a weak light detection circuit and a visible light communication system. It is believed that the OIHP photodetectors with high sensitivity, NIR photoresponse, and ultrafast speed would pave the way to commercial applications.  相似文献   

11.
A graphene/n‐type silicon (n‐Si) heterojunction has been demonstrated to exhibit strong rectifying behavior and high photoresponsivity, which can be utilized for the development of high‐performance photodetectors. However, graphene/n‐Si heterojunction photodetectors reported previously suffer from relatively low specific detectivity due to large dark current. Here, by introducing a thin interfacial oxide layer, the dark current of graphene/n‐Si heterojunction has been reduced by two orders of magnitude at zero bias. At room temperature, the graphene/n‐Si photodetector with interfacial oxide exhibits a specific detectivity up to 5.77 × 1013 cm Hz1/2 W‐1 at the peak wavelength of 890 nm in vacuum, which is highest reported detectivity at room temperature for planar graphene/Si heterojunction photodetectors. In addition, the improved graphene/n‐Si heterojunction photodetectors possess high responsivity of 0.73 A W?1 and high photo‐to‐dark current ratio of ≈107. The current noise spectral density of the graphene/n‐Si photodetector has been characterized under ambient and vacuum conditions, which shows that the dark current can be further suppressed in vacuum. These results demonstrate that graphene/Si heterojunction with interfacial oxide is promising for the development of high detectivity photodetectors.  相似文献   

12.
In this paper, a simple self-assembled lateral growth of ZnO nanowires (NWs) photodetector has been synthesized by a hydrothermal method at a temperature as low as 85 °C. The ZnO NWs exhibit single-crystalline wurtzite with elongated c-axis and can be selectively lateral self-assembled around the edges of ZnO seeding layer. The current of ZnO NWs is sensitive to the variation of ambient pressures, i.e. 4.47 μA was decreased to 1.48 μA with 5 V-bias as 1.1 × 10− 6 Torr changed to 760 Torr, accordingly. Moreover, the current-voltage characteristics of ZnO NWs photodetectors can be evidently distinguished by UV illumination (i.e. λ = 325 nm). The photocurrent of ZnO NWs with UV illumination is twice larger than dark current while the voltage biased at 5 V. Consequently, this faster photoresponse convinces that the hydrothermally grown lateral ZnO NWs devices have a fairly good for the fabrication of UV photodetectors.  相似文献   

13.
1D core–shell heterojunction nanostructures have great potential for high‐performance, compact optoelectronic devices owing to their high interface area to volume ratio, yet their bottom‐up assembly toward scalable fabrication remains a challenge. Here the site‐controlled growth of aligned CdS–CdSe core–shell nanowalls is reported by a combination of surface‐guided vapor–liquid–solid horizontal growth and selective‐area vapor–solid epitaxial growth, and their integration into photodetectors at wafer‐scale without postgrowth transfer, alignment, or selective shell‐etching steps. The photocurrent response of these nanowalls is reduced to 200 ns with a gain of up to 3.8 × 103 and a photoresponsivity of 1.2 × 103 A W?1, the fastest response at such a high gain ever reported for photodetectors based on compound semiconductor nanostructures. The simultaneous achievement of sub‐microsecond response and high‐gain photocurrent is attributed to the virtues of both the epitaxial CdS–CdSe heterojunction and the enhanced charge‐separation efficiency of the core–shell nanowall geometry. Surface‐guided nanostructures are promising templates for wafer‐scale fabrication of self‐aligned core–shell nanostructures toward scalable fabrication of high‐performance compact photodetectors from the bottom‐up.  相似文献   

14.
Various photodetectors showing extremely high photoresponsivity have been frequently reported, but many of these photodetectors could not avoid the simultaneous amplification of dark current. A gate‐controlled graphene–silicon Schottky junction photodetector that exhibits a high on/off photoswitching ratio (≈104), a very high photoresponsivity (≈70 A W−1), and a low dark current in the order of µA cm−2 in a wide wavelength range (395–850 nm) is demonstrated. The photoresponsivity is ≈100 times higher than that of existing commercial photodetectors, and 7000 times higher than that of graphene‐field‐effect transistor‐based photodetectors, while the dark current is similar to or lower than that of commercial photodetectors. This result can be explained by a unique gain mechanism originating from the difference in carrier transport characteristics of silicon and graphene.  相似文献   

15.
2D lead iodide (PbI2) is attracting great interest due to its great potential in the application of UV photodetectors. In this work, a facile solution‐based method is developed to synthesize ultraflat PbI2 nanoflakes for high‐performance UV photodetectors. By maintaining at proximate room temperature and adding an evaporation suppression solvent for slow‐rate crystal growth, high‐quality PbI2 nanoflakes with an ultraflat surface are obtained. The UV photodetectors based on 2D PbI2 nanoflakes exhibit a high photoresponsivity of 0.51 A W?1, a high detectivity of 4.0 × 1010 Jones, a high external quantum efficiency (EQE) of 168.9%, and a rapid response speed including a rise time of 14.1 ms and a decay time of 31.0 ms. The balanced and excellent photodetector performance of these devices paves the road for practical UV photodetection based on 2D PbI2 nanoflakes.  相似文献   

16.
The ultrabroadband spectrum detection from ultraviolet (UV) to long-wavelength infrared (LWIR) is promising for diversified optoelectronic applications of imaging, sensing, and communication. However, the current LWIR-detecting devices suffer from low photoresponsivity, high cost, and cryogenic environment. Herein, a high-performance ultrabroadband photodetector is demonstrated with detecting range from UV to LWIR based on air-stable nonlayered ultrathin Fe3O4 nanosheets synthesized via a space-confined chemical vapor deposition (CVD) method. Ultrahigh photoresponsivity (R) of 561.2 A W−1, external quantum efficiency (EQE) of 6.6 × 103%, and detectivity (D*) of 7.42 × 108 Jones are achieved at the wavelength of 10.6 µm. The multimechanism synergistic effect of photoconductive effect and bolometric effect demonstrates the high sensitivity for light with any light intensities. The outstanding device performance and complementary mixing photoresponse mechanisms open up new potential applications of nonlayered 2D materials for future infrared optoelectronic devices.  相似文献   

17.
2D materials are considered as intriguing building blocks for next‐generation optoelectronic devices. However, their photoresponse performance still needs to be improved for practical applications. Here, ultrasensitive 2D phototransistors are reported employing chemical vapor deposition (CVD)‐grown 2D Bi2O2Se transferred onto silicon substrates with a noncorrosive transfer method. The as‐transferred Bi2O2Se preserves high quality in contrast to the serious quality degradation in hydrofluoric‐acid‐assisted transfer. The phototransistors show a responsivity of 3.5 × 104 A W?1, a photoconductive gain of more than 104, and a time response in the order of sub‐millisecond. With back gating of the silicon substrate, the dark current can be reduced to several pA. This yields an ultrahigh sensitivity with a specific detectivity of 9.0 × 1013 Jones, which is one of the highest values among 2D material photodetectors and two orders of magnitude higher than that of other CVD‐grown 2D materials. The high performance of the phototransistor shown here together with the developed unique transfer technique are promising for the development of novel 2D‐material‐based optoelectronic applications as well as integrating with state‐of‐the‐art silicon photonic and electronic technologies.  相似文献   

18.
Self-powered photodetectors (PDs) have been recognized as one of the developing trends of next-generation optoelectronic devices. Herein, it is shown that by introducing a thin layer of SnO film between the Si substrate and the ZnO film, the self-powered photodetector Al/Si/SnO/ZnO/ITO exhibits a stable and uniform violet sensing ability with high photoresponsivity and fast response. The SnO layer introduces a built-in electrostatic field to highly enhance the photocurrent by over 1000%. By analyzing energy diagrams of the p-n junction, the underlying physical mechanism of the self-powered violet PDs is carefully illustrated. A high photo-responsivity (R) of 93 mA W−1 accompanied by a detectivity (D*) of 3.1 × 1010 Jones are observed under self-driven conditions, when the device is exposed to 405 nm excitation laser wavelength, with a laser power density of 36 mW cm−2 and at a chopper frequency of 400 Hz. The Si/SnO/ZnO/ITO device shows an enhancement of 3067% in responsivity when compared to the Al/Si/ZnO/ITO. The photodetector holds an ultra-fast response of ≈ 2 µs, which is among the best self-powered photodetectors reported in the literature based on ZnO.  相似文献   

19.
The upsurge of new materials that can be used for near-infrared (NIR) photodetectors operated without cooling is crucial. As a novel material with a small bandgap of ≈0.28 eV, the topological crystalline insulator SnTe has attracted considerable attention. Herein, this work demonstrates self-driven NIR photodetectors based on SnTe/Si and SnTe:Si/Si heterostructures. The SnTe/Si heterostructure has a high detectivity D* of 3.3 × 1012 Jones. By Si doping, the SnTe:Si/Si heterostructure reduces the dark current density and increases the photocurrent by ≈1 order of magnitude simultaneously, which improves the detectivity D* by ≈2 orders of magnitude up to 1.59 × 1014 Jones. Further theoretical analysis indicates that the improved device performance may be ascribed to the bulk photovoltaic effect (BPVE), in which doped Si atoms break the inversion symmetry and thus enable the generation of additional photocurrents beyond the heterostructure. In addition, the external quantum efficiency (EQE) measured at room temperature at 850 nm increases by a factor of 7.5 times, from 38.5% to 289%. A high responsivity of 1979 mA W−1 without bias and fast rising time of 8 µs are also observed. The significantly improved photodetection achieved by the Si doping is of great interest and may provide a novel strategy for superior photodetectors.  相似文献   

20.
Here, we report for the first time the fabrication of metal–semiconductor–metal ultraviolet photodetector based on catalyst-free growth of ZnO nanowire networks on ITO seeds/glass substrates by thermal evaporation method. The morphological, structural, and optical properties of the sample were studied by using field emission scanning electron microscopy, X-ray diffraction, photoluminescence, and UV–Vis spectrophotometer. Upon exposure to 365 nm light (1.5 mW/cm2) at five-bias voltage, the device showed 2.32 × 103 sensitivity. In addition, the photocurrent was 1.79 × 10−4 A, and the internal gain of the photodetector was 24.2. The response and the recovery times were calculated to be 3.9 and 2.6 s, respectively, upon illumination to a pulse UV light (365 nm, 1.5 mW/cm2) at five-bias voltage. All of these results demonstrate that this high-quality detector can be a promising candidate as a low-cost UV photodetector for commercially integrated photoelectronic applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号