首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Infrared (IR) photodetectors are finding diverse applications in imaging, information communication, military, etc. 2D metal chalcogenides (2DMCs) have attracted increasing interest in view of their unique structures and extraordinary physical properties. They have demonstrated outstanding IR detection performance including high responsivity and detectivity, high on/off ratio, fast response rate, stable room temperature operability, and good mechanical flexibility, which has opened up a new prospect in next‐generation IR photodetectors. This Review presents a comprehensive summary of recent progress in advanced IR photodetectors based on 2DMCs. The rationale of the photodetectors containing photocurrent generation mechanisms and performance parameters are briefly introduced. The device performances of 2DMCs‐based IR photodetectors are also systematically summarized, and some representative achievements are highlighted as well. Finally, conclusions and outlooks are delivered as a guideline for this thriving field.  相似文献   

2.
Rational design of 2D materials is crucial for the realization of their profound implications in energy and environmental fields. The past decade has witnessed significant developments in 2D material research, yet a number of critical challenges remain for real-world applications. Nanoscale assembly, precise control over the orientational and positional ordering, and complex interfaces among 2D layers are essential for the continued progress of 2D materials, especially for energy storage and conversion and environmental remediation. Herein, recent progress, the status, future prospects, and challenges associated with nanoscopic assembly of 2D materials are highlighted, specifically targeting energy and environmental applications. Geometric dimensional diversity of 2D material assembly is focused on, based on novel assembly mechanisms, including 1D fibers from the colloidal liquid crystalline phase, 2D films by interfacial tension (Marangoni effect), and 3D nanoarchitecture assembly by electrochemical processes. Relevant critical advantages of 2D material assembly are highlighted for application fields, including secondary batteries, supercapacitors, catalysts, gas sensors, desalination, and water decontamination.  相似文献   

3.
Electrochemical energy storage (EES) devices have attracted immense research interests as an effective technology for utilizing renewable energy. 1D carbon‐based nanostructures are recognized as highly promising materials for EES application, combining the advantages of functional 1D nanostructures and carbon nanomaterials. Here, the recent advances of 1D carbon‐based nanomaterials for electrochemical storage devices are considered. First, the different categories of 1D carbon‐based nanocomposites, namely, 1D carbon‐embedded, carbon‐coated, carbon‐encapsulated, and carbon‐supported nanostructures, and the different synthesis methods are described. Next, the practical applications and optimization effects in electrochemical energy storage devices including Li‐ion batteries, Na‐ion batteries, Li–S batteries, and supercapacitors are presented. After that, the advanced in situ detection techniques that can be used to investigate the fundamental mechanisms and predict optimization of 1D carbon‐based nanocomposites are discussed. Finally, an outlook for the development trend of 1D carbon‐based nanocomposites for EES is provided.  相似文献   

4.
2D genuine unilamellar nanosheets, that are, the elementary building blocks of their layered parent crystals, have gained increasing attention, owing to their unique physical and chemical properties, and 2D features. In parallel with the great efforts to isolate these atomic-thin crystals, a unique strategy to integrate them into 2D vertically stacked heterostuctures has enabled many functional applications. In particular, such 2D heterostructures have recently exhibited numerous exciting electrochemical performances for energy storage and conversion, especially the molecular-scale heteroassembled superlattices using diverse 2D unilamellar nanosheets as building blocks. Herein, the research progress in scalable synthesis of 2D superlattices with an emphasis on a facile solution-phase flocculation method is summarized. A particular focus is brought to the advantages of these 2D superlattices in applications of supercapacitors, rechargeable batteries, and water-splitting catalysis. The challenges and perspectives on this promising field are also outlined.  相似文献   

5.
6.
With the development of flexible electronic devices and large‐scale energy storage technologies, functional polymer‐matrix nanocomposites with high permittivity (high‐k) are attracting more attention due to their ease of processing, flexibility, and low cost. The percolation effect is often used to explain the high‐k characteristic of polymer composites when the conducting functional fillers are dispersed into polymers, which gives the polymer composite excellent flexibility due to the very low loading of fillers. Carbon nanotubes (CNTs) and graphene nanosheets (GNs), as one‐dimensional (1D) and two‐dimensional (2D) carbon nanomaterials respectively, have great potential for realizing flexible high‐k dielectric nanocomposites. They are becoming more attractive for many fields, owing to their unique and excellent advantages. The progress in dielectric fields by using 1D/2D carbon nanomaterials as functional fillers in polymer composites is introduced, and the methods and mechanisms for improving dielectric properties, breakdown strength and energy storage density of their dielectric nanocomposites are examined. Achieving a uniform dispersion state of carbon nanomaterials and preventing the development of conductive networks in their polymer composites are the two main issues that still need to be solved in dielectric fields for power energy storage. Recent findings, current problems, and future perspectives are summarized.  相似文献   

7.
The rapid development of electrochemical energy storage (EES) systems requires novel electrode materials with high performance. A typical 2D nanomaterial, layered transition metal dichalcogenides (TMDs) are regarded as promising materials used for EES systems due to their large specific surface areas and layer structures benefiting fast ion transport. The typical methods for the preparation of TMDs and TMD-based nanohybrids are first summarized. Then, in order to improve the electrochemical performance of various kinds of rechargeable batteries, such as lithium-ion batteries, lithium–sulfur batteries, sodium-ion batteries, and other types of emerging batteries, the strategies for the design and fabrication of layered TMD-based electrode materials are discussed. Furthermore, the applications of layered TMD-based nanomaterials in supercapacitors, especially in untraditional supercapacitors, are presented. Finally, the existing challenges and promising future research directions in this field are proposed.  相似文献   

8.
Recent progress in the currently available methods of producing black phosphorus bulk and phosphorene are presented. The effective passivation approaches toward improving the air stability of phosphorene are also discussed. Furthermore, the research efforts on the phosphorene and phosphorene‐based materials for potential applications in lithium ion batteries, sodium ion batteries, and thermoelectric devices are summarized and highlighted. Finally, the outlook including challenges and opportunities in these research fields are discussed.  相似文献   

9.
10.
In this work, the progress in the design of nonsiliceous mesoporous materials (nonSiMPMs) over the last five years from the perspectives of the chemical composition, morphology, loading, and surface modification is summarized. Carbon, metal, and metal oxide are in focus, which are the most promising compositions. Then, representative applications of nonSiMPMs are demonstrated in energy conversion and storage, including recent technical advances in dye‐sensitized solar cells, perovskite solar cells, photocatalysts, electrocatalysts, fuel cells, storage batteries, supercapacitors, and hydrogen storage systems. Finally, the requirements and challenges of the design and application of nonSiMPMs are outlined.  相似文献   

11.
郑伟  杨莉  张培根  陈坚  田无边  张亚梅  孙正明 《材料导报》2018,32(15):2513-2537
能量存储和转化器件是现代社会的重要基础。随着清洁能源、便携式电子设备及电动汽车的快速发展,人们对储能器件性能的要求越来越高。储能材料是决定储能器件性能的重要因素。通常,储能材料需满足具有可逆的氧化还原反应、易于电解液离子脱嵌、尽可能多地提供氧化还原位点、良好的导电能力等要求。近年来,二维材料因比表面积大、离子传输路径短等特点而得到广泛关注,在储能领域也具有巨大的发展潜力。只有原子量级厚度的二维材料,表面活性位点多,力学性能优良,正契合储能器件对电极材料的要求。MXene是一类新型二维材料,通式为Mn+1XnTx,其中M代表过渡族金属元素,X为碳和/或氮,T代表MXene在制备过程中产生的官能团(-F、-OH、-O等),n一般为1~4。自2011年首次报道以来,MXene在储能领域就被寄予厚望。MXene含有碳原子层,所以具有类似石墨烯的良好导电性;而过渡金属层使其表现出类似过渡金属氧化物的性能;同时,表面多样的官能团赋予MXene良好的亲水性。这种独特的性能组合,使得MXene电荷响应速度快,具有赝电容特征且循环性能稳定,成为储能领域的研究焦点。另外,便携式储能器件要求更高的体积容量与体积能量密度,而MXene与碳基电极材料相比堆积密度高,可有效降低器件体积,拓展应用范围。目前,MXene及其复合材料已经在超级电容器、锂/钠/镁离子二次电池、锂硫电池、锌-空气电池、储氢等诸多储能领域展现出实用价值。但是,MXene容易发生塌陷和堆垛,影响其作为电极材料的性能。因此,需将MXene进行插层、改性、掺杂或与其他材料复合,以阻止MXene堆叠,减小离子扩散阻力,并增加离子吸附位点,从而提高其电化学性能。而且,不同的能量存储和转化装置对MXene的合成方法和结构特征有不同的要求,鉴于MXene能源应用相关研究的大量呈现,有必要对其进行全面总结与分析,以期推动MXene在该领域的发展。本文旨在综述MXene在制备、结构、性能及其在储能方面的最新研究动态与发展方向,并讨论面临的挑战。  相似文献   

12.
13.
2D metal chalcogenide thin films have recently attracted considerable attention owing to their unique physicochemical properties and great potential in a variety of applications. Synthesis of large‐area 2D metal chalcogenide thin films in controllable ways remains a key challenge in this research field. Recently, the solution‐based synthesis of 2D metal chalcogenide thin films has emerged as an alternative approach to vacuum‐based synthesis because it is relatively simple and easy to scale up for high‐throughput production. In addition, solution‐based thin films open new opportunities that cannot be achieved from vacuum‐based thin films. Here, a comprehensive summary regarding the basic structures and properties of different types of 2D metal chalcogenides, the mechanistic details of the chemical reactions in the synthesis of the metal chalcogenide thin films, recent successes in the synthesis by different reaction approaches, and the applications and potential uses is provided. In the last perspective section, the technical challenges to be overcome and the future research directions in the solution‐based synthesis of 2D metal chalcogenides are discussed.  相似文献   

14.
High-capacity electrochemical energy storage systems are more urgently needed than ever before with the rapid development of electric vehicles and the smart grid. The most efficient way to increase capacity is to develop electrode materials with low molecular weights. The low-cost metal halides are theoretically ideal cathode materials due to their advantages of high capacity and redox potential. However, their cubic structure and large energy barrier for deionization impede their rechargeability. Here, the reversibility of potassium halides, lithium halides, sodium halides, and zinc halides is achieved through decreasing their dimensionality by the strong π–cation interactions between metal cations and reduced graphene oxide (rGO). Especially, the energy densities of KI-, KBr-, and KCl-based materials are 722.2, 635.0, and 739.4 Wh kg−1, respectively, which are higher than those of other cathode materials for potassium-ion batteries. In addition, the full-cell with 2D KI/rGO as cathode and graphite as anode demonstrates a lifespan of over 150 cycles with a considerable capacity retention of 57.5%. The metal halides-based electrode materials possess promising application prospects and are worthy of more in-depth researches.  相似文献   

15.
Graphene is widely applied as an electrode material in energy storage fields. However, the strong π–π interaction between graphene layers and the stacking issues lead to a great loss of electrochemically active surface area, damaging the performance of graphene electrodes. Developing 3D graphene architectures that are constructed of graphene sheet subunits is an effective strategy to solve this problem. The graphene architectures can be directly utilized as binder‐free electrodes for energy storage devices. Furthermore, they can be used as a matrix to support active materials and further improve their electrochemical performance. Here, recent advances in synthesizing 3D graphene architectures and their composites as well as their application in different energy storage devices, including various battery systems and supercapacitors are reviewed. In addition, their challenges for application at the current stage are discussed and future development prospects are indicated.  相似文献   

16.
Nanostructured composites built from ordinary building units have attracted much attention because of their collective properties for critical applications. Herein, we have demonstrated the heteroassembly of carbon nanotubes and oxide nanocrystals using an aerosol spray method to prepare nanostructured mesoporous composites for electrochemical energy storage. The designed composite architectures show high conductivity and hierarchically structured mesopores, which achieve rapid electron and ion transport in electrodes. Therefore, as‐synthesized carbon nanotube/TiO2 electrodes exhibit high rate performance through rapid Li+ intercalation, making them suitable for ultrafast energy storage devices. Moreover, the synthesis process provides a broadly applicable method to achieve the heteroassembly of vast low‐dimensional building blocks for many important applications.  相似文献   

17.
Colloidal carbon sphere nanoreactors have been explored extensively as a class of versatile materials for various applications in energy storage, electrochemical conversion, and catalysis, due to their unique properties such as excellent electrical conductivity, high specific surface area, controlled porosity and permeability, and surface functionality. Here, the latest updated research on colloidal carbon sphere nanoreactor, in terms of both their synthesis and applications, is summarized. Various synthetic strategies are first discussed, including the hard template method, the soft template method, hydrothermal carbonization, the microemulsion polymerization method, and extension of the Stöber method. Then, the functionalization of colloidal carbon sphere nanoreactors, including the nanoengineering of compositions and the surface features, is discussed. Afterward, recent progress in the major applications of colloidal carbon sphere nanoreactors, in the areas of energy storage, electrochemical conversion, and catalysis, is presented. Finally, the perspectives and challenges for future developments are discussed in terms of controlled synthesis and functionalization of the colloidal carbon sphere nanoreactors with tunable structure, and the composition and properties that are desirable for practical applications.  相似文献   

18.
The increasing demand for constructing ecological civilization and promoting socially sustainable development has encouraged scientists to develop bioinspired materials with required properties and functions. By bringing science and nature together, plenty of novel materials with extraordinary properties can be created by learning the best from natural species. In combination with the exceptional features of 2D nanomaterials, bioinspired 2D nanomaterials and technologies have delivered significant achievements. Here, the progress over the past decade in bioinspired 2D photonic structures, energy nanomaterials, and superwetting materials, is summarized, together with the challenges and opportunities in developing bioinspired materials for sustainable energy and environmental technologies.  相似文献   

19.
20.
Materials engineering plays a key role in the field of energy storage. In particular, engineering materials at the nanoscale offers unique properties resulting in high performance electrodes and electrolytes in various energy storage devices. Consequently, considerable efforts have been made in recent years to fulfill the future requirements of electrochemical energy storage using these advanced materials. Various multi‐functional hybrid nanostructured materials are currently being studied to improve energy and power densities of next generation storage devices. This review describes some of the recent progress in the synthesis of different types of hybrid nanostructures using template assisted and non‐template based methods. The potential applications and recent research efforts to utilize these hybrid nanostructures to enhance the electrochemical energy storage properties of Li‐ion battery and supercapacitor are discussed. This review also briefly outlines some of the recent progress and new approaches being explored in the techniques of fabrication of 3D battery structures using hybrid nanoarchitectures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号