首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The oxygen evolution reaction (OER) catalytic activity of a transition metal oxides/hydroxides based electrocatalyst is related to its pseudocapacitance at potentials lower than the OER standard potential. Thus, a well‐defined pseudocapacitance could be a great supplement to boost OER. Herein, a highly pseudocapacitive Ni‐Fe‐Co hydroxides/N‐doped carbon nanoplates (NiCoFe‐NC)‐based electrocatalyst is synthesized using a facile one‐pot solvothermal approach. The NiCoFe‐NC has a great pseudocapacitive performance with 1849 F g?1 specific capacitance and 31.5 Wh kg?1 energy density. This material also exhibits an excellent OER catalytic activity comparable to the benchmark RuO2 catalysts (an initiating overpotential of 160 mV and delivering 10 mA cm?2 current density at 250 mV, with a Tafel slope of 31 mV dec?1). The catalytic performance of the optimized NiCoFe‐NC catalyst could keep 24 h. X‐ray photoelectron spectroscopy, electrochemically active surface area, and other physicochemical and electrochemical analyses reveal that its great OER catalytic activity is ascribed to the Ni‐Co hydroxides with modular 2‐Dimensional layered structure, the synergistic interactions among the Fe(III) species and Ni, Co metal centers, and the improved hydrophily endowed by the incorporation of N‐doped carbon hydrogel. This work might provide a useful and general strategy to design and synthesize high‐performance metal (hydr)oxides OER electrocatalysts.  相似文献   

2.
The rational design of efficient and cost-effective electrocatalysts for oxygen evolution reaction (OER) with sluggish kinetics, is imperative to diverse clean energy technologies. The performance of electrocatalyst is usually governed by the number of active sites on the surface. Crystalline/amorphous heterostructure has exhibited unique properties and opens new paradigms toward designing electrocatalysts with abundant active sites for improved performance. Hence, Fe doped Ni–Co phosphite (Fe-NiCoHPi) electrocatalyst with cauliflower-like structure, comprising crystalline@amorphous core–shell nanorod, is reported. The experiments uncover that Fe is enriched in the amorphous shell due to the flexibility of the amorphous component. Further density functional theory calculations indicate that the strong electronic interaction between the enriched Fe in the amorphous shell and crystalline core host at the core–shell interface, leads to balanced binding energies of OER intermediates, which is the origin of the catalyst-activity. Eventually, the Fe-NiCoHPi exhibits remarkable activity, with low overpotentials of only 206 and 257 mV at current density of 15 and 100 mA cm−2. Unceasing durability over 90 h is achieved, which is superior to the effective phosphate electrocatalysts. Although the applications at high current remain challenges , this work provides an approach for designing advanced OER electrocatalysts for sustainable energy devices.  相似文献   

3.
The development of highly efficient and durable non‐noble metal electrocatalysts for the hydrogen evolution reaction (HER) is significant for clean and renewable energy research. This work reports the synthesis of N‐doped graphene nanosheets supported N‐doped carbon coated cobalt phosphide (CoP) nanoparticles via a pyrolysis and a subsequent phosphating process by using polyaniline. The obtained electrocatalyst exhibits excellent electrochemical activity for HER with a small overpotential of ?135 mV at 10 mA cm?2 and a low Tafel slope of 59.3 mV dec?1 in 0.5 m H2SO4. Additionally, the encapsulation of N‐doped carbon shell prevents CoP nanoparticles from corrosion, exhibiting good stability after 14 h operation. Moreover, the as‐prepared electrocatalyst also shows outstanding activity and stability in basic and neutral electrolytes.  相似文献   

4.
Developing highly efficient electrocatalysts for oxygen evolution is vital for renewable and sustainable energy production and storage. Herein, nitrogen‐doped carbon encapsulated CoOx‐MoC heterostructures are reported for the first time as high performance oxygen evolution electrocatalysts. The composition can be tuned by the addition of a Mo source to form a nanowire‐assembled hierarchically porous microstructure, which can enlarge the specific surface area, thus exposing more active sites, facilitating mass transport and charge transfer. Moreover, it is demonstrated that the formation of CoOx‐MoC heterostructures and the resulting synergistic effect between MoC and Co facilitate the reaction kinetics, leading to significantly improved oxygen evolution reaction (OER) activity with an onset overpotential of merely 290 mV, and a low overpotential of 330 mV to afford a current density of 10 mA cm?2. The well‐constructed microarchitecture contributes to superior long term stability electrochemical behaviors. This work provides a facile strategy via composition tuning and structure optimization for the development of next‐generation nonprecious metal‐based OER electrocatalysts.  相似文献   

5.
Developing cheap, abundant, and easily available electrocatalysts to drive the hydrogen evolution reaction (HER) at small overpotentials is an urgent demand of hydrogen production from water splitting. Molybdenum disulfide (MoS2) based composites have emerged as competitive electrocatalysts for HER in recent years. Herein, nickel@nitrogen‐doped carbon@MoS2 nanosheets (Ni@NC@MoS2) hybrid sub‐microspheres are presented as HER catalyst. MoS2 nanosheets with expanded interlayer spacings are vertically grown on nickel@nitrogen‐doped carbon (Ni@NC) substrate to form Ni@NC@MoS2 hierarchical sub‐microspheres by a simple hydrothermal process. The formed Ni@NC@MoS2 composites display excellent electrocatalytic activity for HER with an onset overpotential of 18 mV, a low overpotential of 82 mV at 10 mA cm?2, a small Tafel slope of 47.5 mV dec?1, and high durability in 0.5 H2SO4 solution. The outstanding HER performance of the Ni@NC@MoS2 catalyst can be ascribed to the synergistic effect of dense catalytic sites on MoS2 nanosheets with exposed edges and expanded interlayer spacings, and the rapid electron transfer from Ni@NC substrate to MoS2 nanosheets. The excellent Ni@NC@MoS2 electrocatalyst promises potential application in practical hydrogen production, and the strategy reported here can also be extended to grow MoS2 on other nitrogen‐doped carbon encapsulated metal species for various applications.  相似文献   

6.
Herein, the facile preparation of ultrathin (≈3.8 nm in thickness) 2D cobalt phosphate (CoPi) nanoflakes through an oil‐phase method is reported. The obtained nanoflakes are composed of highly ordered mesoporous (≈3.74 nm in diameter) structure and exhibit an amorphous nature. Attractively, when doped with nickel, such 2D mesoporous Ni‐doped CoPi nanoflakes display decent electrocatalytic performances in terms of intrinsic activity, and low kinetic barrier toward the oxygen evolution reaction (OER). Particularly, the optimized 10 at% Ni‐doped CoPi nanoflakes (denoted as Ni10‐CoPi) deliver a low overpotential at 10 mA cm?2 (320 mV), small Tafel slope (44.5 mV dec?1), and high stability for OER in 1.0 m KOH solution, which is comparable to the state‐of‐the‐art RuO2 tested in the same condition (overpotential: 327 mV at 10 mA cm?2, Tafel slope: 73.7 mV dec?1). The robust framework coupled with good OER performance enables the 2D mesoporous Ni10‐CoPi nanoflakes to be a promising material for energy conversion applications.  相似文献   

7.
Metal–organic frameworks (MOFs) with tunable compositions and morphologies are recognized as efficient self‐sacrificial templates to achieve function‐oriented nanostructured materials. Moreover, it is urgently needed to develop highly efficient noble metal‐free oxygen evolution reaction (OER) electrocatalysts to accelerate the development of overall water splitting green energy conversion systems. Herein, a facile and cost‐efficient strategy to synthesize Co9S8 nanoparticles‐embedded N/S‐codoped carbon nanofibers (Co9S8/NSCNFs) as highly active OER catalyst is developed. The hybrid precursor of core–shell ZIF‐wrapped CdS nanowires is first prepared and then leads to the formation of uniformly dispersed Co9S8/N, S‐codoped carbon nanocomposites through a one‐step calcination reaction. The optimal Co9S8/NSCNFs‐850 is demonstrated to possess excellent electrocatalytic performance for OER in 1.0 m KOH solution, affording a low overpotential of 302 mV to reach the current density of 10 mA cm?2, a small Tafel slope of 54 mV dec?1, and superior long‐term stability for 1000 cyclic voltammetry cycles. The favorable results raise a concept of exploring more MOF‐based nanohybrids as precursors to induce the synthesis of novel porous nanomaterials as non‐noble‐metal electrocatalysts for sustainable energy conversion.  相似文献   

8.
Developing efficient and stable non‐noble electrocatalysts for the oxygen evolution reaction (OER) remains challenging for practical applications. While nickel–iron layered double hydroxides (NiFe‐LDH) are emerging as prominent candidates with promising OER activity, their catalytic performance is still restricted by the limited active sites, poor conductivity and durability. Herein, hierarchical nickel–iron–cobalt LDH nanosheets/carbon fibers (NiFeCo‐LDH/CF) are synthesized through solvent‐thermal treatment of ZIF‐67/CF. Extended X‐ray adsorption fine structure analyses reveal that the Co substitution can stabilize the Fe local coordination environment and facilitate the π‐symmetry bonding orbital in NiFeCo‐LDH/CF, thus modifying the electronic structures. Coupling with the structural advantages, including the largely exposed active surface sites and facilitated charge transfer pathway ensured by CF, the resultant NiFeCo‐LDH/CF exhibits excellent OER activity with an overpotential of 249 mV at 10 mA cm?1 as well as robust stability over 20 h.  相似文献   

9.
The rational design and synthesis of anisotropic 3D nanostructures with specific composition, morphology, surface structure, and crystal phase is of significant importance for their diverse applications. Here, the synthesis of well‐crystalline lotus‐thalamus‐shaped Pt‐Ni anisotropic superstructures (ASs) via a facile one‐pot solvothermal method is reported. The Pt‐Ni ASs with Pt‐rich surface are composed of one Ni‐rich “core” with face‐centered cubic (fcc) phase, Ni‐rich “arms” with hexagonal close‐packed phase protruding from the core, and facet‐selectively grown Pt‐rich “lotus seeds” with fcc phase on the end surfaces of the “arms.” Impressively, these unique Pt‐Ni ASs exhibit superior electrocatalytic activity and stability toward the hydrogen evolution reaction under alkaline conditions compared to commercial Pt/C and previously reported electrocatalysts. The obtained overpotential is as low as 27.7 mV at current density of 10 mA cm?2, and the turnover frequency reaches 18.63 H2 s?1 at the overpotential of 50 mV. This work provides a new strategy for the synthesis of highly anisotropic superstructures with a spatial heterogeneity to boost their promising application in catalytic reactions.  相似文献   

10.
Designing high‐performance, precious‐metal‐based, and economic electrocatalysts remains an important challenge in proton exchange membrane (PEM) electrolyzers. Here, a highly active and durable bifunctional electrocatalyst for PEM electrolyzers based on a rattle‐like catalyst comprising a Ni/Ru‐doped Pt core and a Pt/Ni‐doped RuO2 frame shell, which is topotactically transformed from an icosahedral Pt/Ni/Ru nanocrystal, is reported. The RuO2‐based frame shell with its highly reactive surfaces leads to a very high activity for the oxygen evolution reaction (OER) in acidic media, reaching a current density of 10 mA cm?2 at an overpotential of 239 mV, which surpasses those of previously reported catalysts. The Pt dopant in the RuO2 shell enables a sustained OER activity even after a 2000 cycles of an accelerated durability test. The Pt‐based core catalyzes the hydrogen evolution reaction with an excellent mass activity. A two‐electrode cell employing Pt/RuO2 as the electrode catalyst demonstrates very high activity and durability, outperforming the previously reported cell performances.  相似文献   

11.
Nickel (Ni) based materials with non-metal heteroatom doping are competitive substitutes for platinum group catalyst toward alkaline hydrogen oxidation reaction (HOR). However, the incorporation of non-metal atom into the lattice of conventional fcc phase Ni can easily trigger a structural phase transformation, forming hcp phase nonmetallic intermetallic compounds. Such tangle phenomenon makes it difficult to uncover the relationship between HOR catalytic activity and doping effect on fcc phase Ni. Herein, taking trace carbon doped Ni (C-Ni) nanoparticles as an example, a new nonmetal doped Ni nanoparticles synthesized by a simple fast decarbonization route using Ni3C as precursor is presented, which provides an ideal platform to study the structure-activity relationship between alkaline HOR performance and non-metal doping effect toward fcc phase Ni. The obtained C-Ni exhibits an enhanced alkaline HOR catalytic activity compared with pure Ni, approaching to commercial Pt/C. X-ray absorption spectroscopy confirms that the trace carbon doping can modulate the electronic structure of conventional fcc phase nickel. Besides, theoretical calculations suggest that the introducing of C atoms can effectively regulate the d-band center of Ni atoms, resulting in the optimized hydrogen absorption, thereby improving the HOR activity.  相似文献   

12.
Electrocatalytic hydrogen evolution reaction (HER) based on water splitting holds great promise for clean energy technologies, in which the key issue is exploring cost‐effective materials to replace noble metal catalysts. Here, a sequential chemical etching and pyrolysis strategy are developed to prepare molybdenum carbide‐decorated metallic cobalt@nitrogen‐doped porous carbon polyhedrons (denoted as Mo/Co@N–C) hybrids for enhanced electrocatalytic hydrogen evolution. The obtained metallic Co nanoparticles are coated by N‐doped carbon thin layers while the formed molybdenum carbide nanoparticles are well‐dispersed in the whole Co@N–C frames. Benefiting from the additionally implanted molybdenum carbide active sites, the HER performance of Mo/Co@N–C hybrids is significantly promoted compared with the single Co@N–C that is derived from the pristine ZIF‐67 both in alkaline and acidic media. As a result, the as‐synthesized Mo/Co@N–C hybrids exhibit superior HER electrocatalytic activity, and only very low overpotentials of 157 and 187 mV are needed at 10 mA cm?2 in 1 m KOH and 0.5 m H2SO4, respectively, opening a door for rational design and fabrication of novel low‐cost electrocatalysts with hierarchical structures toward electrochemical energy storage and conversion.  相似文献   

13.
The oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are cornerstone reactions for many renewable energy technologies. Developing cheap yet durable substitutes of precious‐metal catalysts, especially the bifunctional electrocatalysts with high activity for both ORR and OER reactions and their streamlined coupling process, are highly desirable to reduce the processing cost and complexity of renewable energy systems. Here, a facile strategy is reported for synthesizing double‐shelled hybrid nanocages with outer shells of Co‐N‐doped graphitic carbon (Co‐NGC) and inner shells of N‐doped microporous carbon (NC) by templating against core–shell metal–organic frameworks. The double‐shelled NC@Co‐NGC nanocages well integrate the high activity of Co‐NGC shells into the robust NC hollow framework with enhanced diffusion kinetics, exhibiting superior electrocatalytic properties to Pt and RuO2 as a bifunctional electrocatalyst for ORR and OER, and hold a promise as efficient air electrode catalysts in Zn–air batteries. First‐principles calculations reveal that the high catalytic activities of Co‐NGC shells are due to the synergistic electron transfer and redistribution between the Co nanoparticles, the graphitic carbon, and the doped N species. Strong yet favorable adsorption of an OOH* intermediate on the high density of uncoordinated hollow‐site C atoms with respect to the Co lattice in the Co‐NGC structure is a vital rate‐determining step to achieve excellent bifunctional electrocatalytic activity.  相似文献   

14.
The development of active bifunctional electrocatalysts with low cost and earth‐abundance toward oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) remains a great challenge for overall water splitting. Herein, metallic Ni4Mo nanoalloys are firstly implanted on the surface of NiMoOx nanowires array (NiMo/NiMoOx ) as metal/metal oxides hybrid. Inspired by the superiority of carbon conductivity, an ultrathin nitrogen‐doped carbon sheath intercalated NiMo/NiMoOx (NC/NiMo/NiMoOx ) nanowires as integrated core–shell architecture are constructed. The integrated NC/NiMo/NiMoOx array exhibits an overpotential of 29 mV at 10 mA cm?2 and a low Tafel slope of 46 mV dec?1 for HER due to the abundant active sites, fast electron transport, low charge‐transfer resistance, unique architectural structure and synergistic effect of carbon sheath, nanoalloys, and oxides. Moreover, as OER catalysts, the NC/NiMo/NiMoOx hybrids require an overpotential of 284 mV at 10 mA cm?2. More importantly, the NC/NiMo/NiMoOx array as a highly active and stable electrocatalyst approaches ≈10 mA cm?2 at a voltage of 1.57 V, opening an avenue to the rational design and fabrication of the promising electrode materials with architecture structures toward the electrochemical energy storage and conversion.  相似文献   

15.
Exploring the origin of transition metal (TM) lattice‐doped layered double hydroxides (LDHs) toward the oxygen evolution reaction (OER) plays a crucial role in engineering efficient electrocatalysts. Without understanding the physics behind the TM‐induced catalytic enhancements, it would be challenging to design the next generation of electrocatalysts. Herein, single Ru atoms are introduced into a CoCr LDHs lattice to improve activity. In 0.1 m KOH, CoCrRu LDHs require only 290 mV overpotential to drive to 10 mA cm?2 and show a Tafel slope of 56.12 mV dec?1. Electronic structure analyses based on density functional theory confirm that promoted OER activity originates from synergetic charge transfer among Ru, Cr, and Co elements. Specifically, Ru dopants can downshift d states of Co and enhance electron donation of Cr to oxygenates, which essentially breaks the scaling relation and achieves higher activity. This work provides insights into how single atomic Ru dopant tunes the electronic structures of its neighbor's active site Co and thus increases OER activities.  相似文献   

16.
The design of high‐efficiency non‐noble bifunctional electrocatalysts for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is paramount for water splitting technologies and associated renewable energy systems. Spinel‐structured oxides with rich redox properties can serve as alternative low‐cost OER electrocatalysts but with poor HER performance. Here, zirconium regulation in 3D CoFe2O4 (CoFeZr oxides) nanosheets on nickel foam, as a novel strategy inducing bifunctionality toward OER and HER for overall water splitting, is reported. It is found that the incorporation of Zr into CoFe2O4 can tune the nanosheet morphology and electronic structure around the Co and Fe sites for optimizing adsorption energies, thus effectively enhancing the intrinsic activity of active sites. The as‐synthesized 3D CoFeZr oxide nanosheet exhibits high OER activity with small overpotential, low Tafel slope, and good stability. Moreover, it shows unprecedented HER activity with a small overpotential of 104 mV at 10 mA cm?2 in alkaline media, which is better than ever reported counterparts. When employing the CoFeZr oxides nanosheets as both anode and cathode catalysts for overall water splitting, a current density of 10 mA cm?2 is achieved at the cell voltage of 1.63 V in 1.0 m KOH.  相似文献   

17.
Surface reconstruction of electrocatalysts is very important to clarify the structure–component–activity relationship. In this work, in situ Raman and ex situ technologies are used to capture the surface structure evolution of F–Fe–CoP during the oxygen evolution reaction (OER). The results reveal that the leaching of F accelerates the dynamic reconstruction response of CoP to rapidly convert into active (oxy)hydroxide species. The further introduction of Fe can accelerate the charge transfer rate and alleviate the structural stacking caused by insufficient kinetics. The introduction of F and Fe increases the electron occupation states of cobalt sites and promotes the adsorption of OH ions on the CoP catalyst, which significantly improves the OER performance. F–Fe–CoP exhibits excellent OER performance with an overpotential of 259 mV at 20 mA cm−2. This finding enriches the OER mechanism associated with the surface reconstruction of CoP and provides a reference for the rational design of efficient electrocatalysts.  相似文献   

18.
Synergistic improvements in the electrical conductivity and catalytic activity for the oxygen reduction reaction (ORR)/oxygen evolution reaction (OER) are of paramount importance for rechargeable metal–air batteries. In this study, one‐nanometer‐scale ultrathin cobalt oxide (CoOx) layers are fabricated on a conducting substrate (i.e., a metallic Co/N‐doped graphene substrate) to achieve superior bifunctional activity in both the ORR and OER and ultrahigh output power for flexible Zn–air batteries. Specifically, at the atomic scale, the ultrathin CoOx layers effectively accelerate electron conduction and provide abundant active sites. X‐ray absorption spectroscopy reveals that the metallic Co/N‐doped graphene substrate contributes to electron transfer toward the ultrathin CoOx layer, which is beneficial for the electrocatalytic process. The as‐obtained electrocatalyst exhibits ultrahigh electrochemical activity with a positive half‐wave potential of 0.896 V for ORR and a low overpotential of 370 mV at 10 mA cm?2 for OER. The flexible Zn–air battery built with this catalyst exhibits an ultrahigh specific power of 300 W gcat ?1, which is essential for portable devices. This work provides a new design pathway for electrocatalysts for high‐performance rechargeable metal–air battery systems.  相似文献   

19.
开发高效和低成本的析氧电极材料是工业电解水制氢技术发展道路上至关重要的技术难题.本文利用溶剂热方法将镍铁水滑石阵列转化为具有铁掺杂的多相硫化镍(NiS和Ni3S2)阵列,制备出一种具有高效析氧性能的电极材料.粗糙的纳米片表面有利于高活性位点的暴露.电化学分析表明其仅需要100 mV的过电位就可以达到10 mA cm^-2的电流密度,相对于镍铁水滑石阵列降低了130 mV.我们进一步通过密度泛函理论计算来揭示其活性提升机理,发现具有部分S氧化的Fe掺杂NiS可以极大地降低析氧反应中间体形成的阻力,从而加快催化反应进行,提高催化活性.另一方面,(Ni,Fe)S和(Ni,Fe)3S2与三维多孔泡沫镍结构有很好的结合作用,反应电子可以通过金属性的二硫化镍相进行高效传输,进一步加速析氧催化进程.  相似文献   

20.
Portable water splitting devices driven by rechargeable metal–air batteries or solar cells are promising, however, their scalable usages are still hindered by lack of suitable multifunctional electrocatalysts. Here, a highly efficient multifunctional electrocatalyst is demonstrated, i.e., 2D nanosheet array of Mo‐doped NiCo2O4/Co5.47N heterostructure deposited on nickel foam (Mo‐NiCo2O4/Co5.47N/NF). The successful doping of non‐3d high‐valence metal into a heterostructured nanosheet array, which is directly grown on a conductive substrate endows the resultant catalyst with balanced electronic structure, highly exposed active sites, and binder‐free electrode architecture. As a result, the Mo‐NiCo2O4/Co5.47N/NF exhibits remarkable catalytic activity toward the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER), affording high current densities of 50 mA cm?2 at low overpotentials of 310 mV for OER, and 170 mV for HER, respectively. Moreover, a low voltage of 1.56 V is achieved for the Mo‐NiCo2O4/Co5.47N/NF‐based water splitting cell to reach 10 mA cm?2. More importantly, a portable overall water splitting device is demonstrated through the integration of a water‐splitting cell and two Zn–air batteries (open‐circuit voltage of 1.43 V), which are all fabricated based on Mo‐NiCo2O4/Co5.47N/NF, demonstrating a low‐cost way to generate fuel energy. This work offers an effective strategy to develop high‐performance metal‐doped heterostructured electrode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号