首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Graphitic carbon nitride modified with plasmonic Ag@SiO2 core–shell nanoparticles (g‐C3N4/Ag@SiO2) are proposed for enhanced photocatalytic solar hydrogen evolution under visible light. Nanosized gaps between the plasmonic Ag nanoparticles (NPs) and g‐C3N4 are created and precisely modulated to be 8, 12, 17, and 21 nm by coating SiO2 shells on the Ag NPs. The optimized photocatalytic hydrogen production activity for g‐C3N4/Ag@SiO2 is achieved with a nanogap of 12 nm (11.4 μmol h−1) to be more than twice as high as that of pure g‐C3N4 (5.6 μmol h−1). The plasmon resonance energy transfer (PRET) effect of Ag NPs is innovatively proved from a physical view on polymer semiconductors for photoredox catalysis. The PRET effect favors the charge carrier separation by inducing electron–hole pairs efficiently formed in the near‐surface region of g‐C3N4. Furthermore, via engineering the width of the nanogap, the PRET and energy‐loss Förster resonance energy transfer processes are perfectly balanced, resulting in considerable enhancement of photocatalytic hydrogen production activity over the g‐C3N4/Ag@SiO2 plasmonic photocatalyst.  相似文献   

2.
Artificial photosynthesis of hydrocarbon fuels by utilizing solar energy and CO2 is considered as a potential route for solving ever‐increasing energy crisis and greenhouse effect. Herein, hierarchical porous O‐doped graphitic carbon nitride (g‐C3N4) nanotubes (OCN‐Tube) are prepared via successive thermal oxidation exfoliation and curling‐condensation of bulk g‐C3N4. The as‐prepared OCN‐Tube exhibits hierarchically porous structures, which consist of interconnected multiwalled nanotubes with uniform diameters of 20–30 nm. The hierarchical OCN‐Tube shows excellent photocatalytic CO2 reduction performance under visible light, with methanol evolution rate of 0.88 µmol g?1 h?1, which is five times higher than bulk g‐C3N4 (0.17 µmol g?1 h?1). The enhanced photocatalytic activity of OCN‐Tube is ascribed to the hierarchical nanotube structure and O‐doping effect. The hierarchical nanotube structure endows OCN‐Tube with higher specific surface area, greater light utilization efficiency, and improved molecular diffusion kinetics, due to the more exposed active edges and multiple light reflection/scattering channels. The O‐doping optimizes the band structure of g‐C3N4, resulting in narrower bandgap, greater CO2 affinity, and uptake capacity as well as higher separation efficiency of photogenerated charge carriers. This work provides a novel strategy to design hierarchical g‐C3N4 nanostructures, which can be used as promising photocatalyst for solar energy conversion.  相似文献   

3.
Holey defective g‐C3N4 photocatalysts, which are easily prepared via a novel photoassisted heating process, are reported. The photoassisted treatment not only helps to create abundant holes, endowing g‐C3N4 with more exposed catalytic active sites and crossplane diffusion channels to shorten the diffusion distance of both reactants from the surface to bulk and charge carriers from the bulk to surface, but also introduces nitrogen vacancies in the tri‐s‐triazine repeating units of g‐C3N4, inducing the narrowing of intrinsic bandgap and the formation of defect states within bandgap to extend the visible‐light absorption range and suppress the radiative electron–hole recombination. As a result, the holey defective g‐C3N4 photocatalysts show much higher photocatalytic activity for H2O2 production with optimized enhancement up to ten times higher than pristine bulk g‐C3N4. The newly developed synthetic strategy adopted here enables the sufficient utilization of solar energy and shows rather promising for the modification of other materials for efficient energy‐related applications.  相似文献   

4.
A tubular g‐C3N4 isotype heterojunction (TCNH) photocatalyst was designed for cooperative manipulation of the oriented transfer of photogenerated electrons and holes to pursue high catalytic performance. The adduct of cyanuric acid and melamine (CA·M) is first hydrothermally treated to assemble into hexagonal prism crystals; then the hybrid precursors of urea and CA·M crystals are calcined to form tubular g‐C3N4 isotype heterojunctions. Upon visible‐light irradiation, the photogenerated electrons transfer from g‐C3N4 (CA·M) to g‐C3N4 (urea) driven by the conduction band offset of 0.05 eV, while the photogenerated holes transfer from g‐C3N4 (urea) to g‐C3N4 (CA·M) driven by the valence band offset of 0.18 eV, which renders oriented transfer of the charge carriers across the heterojunction interface. Meanwhile, the tubular structure of TCNH is favorable for oriented electron transfer along the longitudinal dimension, which greatly decreases the chance of charge carrier recombination. Consequently, TCNH exhibits a high hydrogen evolution rate of 63 μmol h?1 (0.04 g, λ > 420 nm), which is nearly five times of the pristine g‐C3N4 and higher than most of the existing g‐C3N4 photocatalysts. This study demonstrates that isotype heterojunction structure and tubular structure can jointly manipulate the oriented transfer of electrons and holes, thus facilitating the visible‐light photocatalysis.  相似文献   

5.
Scalable and sustainable solar hydrogen production via photocatalytic water splitting requires extremely active and stable light‐harvesting semiconductors to fulfill the stringent requirements of suitable energy band position and rapid interfacial charge transfer process. Motivated by this point, increasing attention has been given to the development of photocatalysts comprising intimately interfaced photoabsorbers and cocatalysts. Herein, a simple one‐step approach is reported to fabricate a high‐efficiency photocatalytic system, in which single‐site dispersed iron atoms are rationally integrated on the intrinsic structure of the porous crimped graphitic carbon nitride (g‐C3N4) polymer. A detailed analysis of the formation process shows that a stable complex is generated by spontaneously coordinating dicyandiamidine nitrate with iron ions in isopropanol, thus leading to a relatively complicated polycondensation reaction upon thermal treatment. The correlation of experimental and computational results confirms that optimized electronic structures of Fe@g‐C3N4 with an appropriate d‐band position and negatively shifting Fermi level can be achieved, which effectively gains the reducibility of electrons and creates more active sites for the photocatalytic reactions. As a result, the Fe@g‐C3N4 exhibits a highlighted intramolecular synergistic effect, performing greatly enhanced solar‐photon‐driven activities, including excellent photocatalytic hydrogen evolution rate (3390 µmol h?1 g?1, λ > 420 nm) and a reliable apparent quantum efficiency value of 6.89% at 420 nm.  相似文献   

6.
Semiconducting photocatalytic solar–hydrogen conversion (SHC) from water is a great challenge for renewable fuel production. Organic semiconductors hold great promise for SHC in an economical and environmentally benign manner. However, organic semiconductors available for SHC are scarce and less efficient than most inorganic ones, largely due to their intrinsic Frenkel excitons with high binding energy. In this study the authors report polymer heterojunction (PHJ) photocatalysts consisting of polyfluorene family polymers and graphitic carbon nitride (g‐C3N4) for efficient SHC. A molecular design strategy is executed to further promote the exciton dissociation or light harvesting ability of these PHJs via alternative approaches. It is revealed that copolymerizing electron‐donating carbazole unit into the poly(9,9‐dioctylfluorene) backbone promotes exciton dissociation within the poly(N‐decanyl‐2,7‐carbazole‐alt‐9,9‐dioctylfluorene) (PCzF)/g‐C3N4 PHJ, achieving an enhanced apparent quantum yield (AQY) of 27% at 440 nm over PCzF/g‐C3N4. Alternatively, copolymerizing electron‐accepting benzothiadiazole unit extended the visible light response of the obtained poly(9,9‐dioctylfluorene‐alt‐benzothiadiazole)/g‐C3N4 PHJ, leading to an AQY of 13% at 500 nm. The present study highlights that constructing PHJs and adapting a rational molecular design of PHJs are effective strategies to exploit more of the potential of organic semiconductors for efficient solar energy conversion.  相似文献   

7.
Herein, the structural effect of MoS2 as a cocatalyst of photocatalytic H2 generation activity of g‐C3N4 under visible light irradiation is studied. By using single‐particle photoluminescence (PL) and femtosecond time‐resolved transient absorption spectroscopies, charge transfer kinetics between g‐C3N4 and two kinds of nanostructured MoS2 (nanodot and monolayer) are systematically investigated. Single‐particle PL results show the emission of g‐C3N4 is quenched by MoS2 nanodots more effectively than MoS2 monolayers. Electron injection rate and efficiency of g‐C3N4/MoS2‐nanodot hybrid are calculated to be 5.96 × 109 s?1 and 73.3%, respectively, from transient absorption spectral measurement, which are 4.8 times faster and 2.0 times higher than those of g‐C3N4/MoS2‐monolayer hybrid. Stronger intimate junction between MoS2 nanodots and g‐C3N4 is suggested to be responsible for faster and more efficient electron injection. In addition, more unsaturated terminal sulfur atoms can serve as the active site in MoS2 nanodot compared with MoS2 monolayer. Therefore, g‐C3N4/MoS2 nanodot exhibits a 7.9 times higher photocatalytic activity for H2 evolution (660 µmol g?1 h?1) than g‐C3N4/MoS2 monolayer (83.8 µmol g?1 h?1). This work provides deep insight into charge transfer between g‐C3N4 and nanostructured MoS2 cocatalysts, which can open a new avenue for more rationally designing MoS2‐based catalysts for H2 evolution.  相似文献   

8.
ZIF‐67‐derived 3D hollow mesoporous crystalline Co3O4 wrapped by 2D graphitic carbon nitride (g‐C3N4) nanosheets are prepared by low temperature annealing, and are used for the photocatalytic oxidation of nitric oxide (NO) at a concentration of 600 ppb. The p–n heterojunction between Co3O4 and g‐C3N4 forms a spatial conductive network frame and results in a broad visible light response range. The hollow mesoporous structure of Co3O4 contributes to the circulation and adsorption of NO, and the large specific surface area exposes abundant active sites for the reaction of active species. A maximum NO degradation efficiency of 57% is achieved by adjusting the mass of the Co3O4 precursor. Cycling tests and X‐ray diffraction indicate the high stability and recyclability of the composite, making it promising in environmental purification applications.  相似文献   

9.
The challenge in the artificial photosynthesis of fossil resources from CO2 by utilizing solar energy is to achieve stable photocatalysts with effective CO2 adsorption capacity and high charge‐separation efficiency. A hierarchical direct Z‐scheme system consisting of urchin‐like hematite and carbon nitride provides an enhanced photocatalytic activity of reduction of CO2 to CO, yielding a CO evolution rate of 27.2 µmol g?1 h?1 without cocatalyst and sacrifice reagent, which is >2.2 times higher than that produced by g‐C3N4 alone (10.3 µmol g?1 h?1). The enhanced photocatalytic activity of the Z‐scheme hybrid material can be ascribed to its unique characteristics to accelerate the reduction process, including: (i) 3D hierarchical structure of urchin‐like hematite and preferable basic sites which promotes the CO2 adsorption, and (ii) the unique Z‐scheme feature efficiently promotes the separation of the electron–hole pairs and enhances the reducibility of electrons in the conduction band of the g‐C3N4. The origin of such an obvious advantage of the hierarchical Z‐scheme is not only explained based on the experimental data but also investigated by modeling CO2 adsorption and CO adsorption on the three different atomic‐scale surfaces via density functional theory calculation. The study creates new opportunities for hierarchical hematite and other metal‐oxide‐based Z‐scheme system for solar fuel generation.  相似文献   

10.
It is an important issue that exposed active nitrogen atoms (e.g., edge or amino N atoms) in graphitic carbon nitride (g‐C3N4) could participate in ammonia (NH3) synthesis during the photocatalytic nitrogen reduction reaction (NRR). Herein, the experimental results in this work demonstrate that the exposed active N atoms in g‐C3N4 nanosheets can indeed be hydrogenated and contribute to NH3 synthesis during the visible‐light photocatalytic NRR. However, these exposed N atoms can be firmly stabilized through forming B? N? C coordination by means of B‐doping in g‐C3N4 nanosheets (BCN) with a B‐doping content of 13.8 wt%. Moreover, the formed B? N? C coordination in g‐C3N4 not only effectively enhances the visible‐light harvesting and suppresses the recombination of photogenerated carriers in g‐C3N4, but also acts as the catalytic active site for N2 adsorption, activation, and hydrogenation. Consequently, the as‐synthesized BCN exhibits high visible‐light‐driven photocatalytic NRR activity, affording an NH3 yield rate of 313.9 µmol g?1 h?1, nearly 10 times of that for pristine g‐C3N4. This work would be helpful for designing and developing high‐efficiency metal‐free NRR catalysts for visible‐light‐driven photocatalytic NH3 synthesis.  相似文献   

11.
Semiconducting polymers with π‐conjugated electronic structures have potential application in the large‐scale printable fabrication of high‐performance electronic and optoelectronic devices. However, owing to their poor environmental stability and high‐cost synthesis, polymer semiconductors possess limited device implementation. Here, an approach for constructing a π‐conjugated polymer/graphene composite material to circumvent these limitations is provided, and then this material is patterned into 1D arrays. Driven by the π–π interaction, several‐layer polymers can be adsorbed onto the graphene planes. The low consumption of the high‐cost semiconductor polymers and the mass production of graphene contribute to the low‐cost fabrication of the π‐conjugated polymer/graphene composite materials. Based on the π‐conjugated system, a reduced π–π stacking distance between graphene and the polymer can be achieved, yielding enhanced charge‐transport properties. Owing to the incorporation of graphene, the composite material shows improved thermal stability. More generally, it is believed that the construction of the π‐conjugated composite shows clear possibility of integrating organic molecules and 2D materials into microstructure arrays for property‐by‐design fabrication of functional devices with large area, low cost, and high efficiency.  相似文献   

12.
Codoping of N and O in ultrathin graphitic carbon nitride (g‐C3N4) nanosheets leads to an inner electric field. This field restrains the recombination of photogenerated carriers and, thus, enhances hydrogen evolution. The layered structure of codoped g‐C3N4 nanosheets (N‐O‐CNNS) not only provides abundant sites of contact with the reaction medium, but also decreases the distance over which the photogenerated electron–hole pairs are transported to the reaction interface. Quantum confinement in the ultrathin structure results in an increased bandgap and makes the photocatalytic reaction more favorable than bulk g‐C3N4. Under visible light irradiation, N‐O‐CNNS with 3 wt% Pt achieves a hydrogen evolution rate of 9.2 mmol g?1 h?1 and a value of 46.9 mmol g?1 h?1 under AM1.5 with 5 wt% Pt. Thus, this work paves the way for designing efficient nanostructures with increased separation/transfer efficiency of photogenerated carriers and, hence, increased photocatalytic activities.  相似文献   

13.
The established ability of graphitic carbon‐nanomaterials to undergo ambient condition Diels–Alder reactions with cyclopentadienyl (Cp) groups is herein employed to prepare fullerene‐polythiophene covalent hybrids with improved electron transfer and film forming characteristics. A novel precisely designed polythiophene (M n 9.8 kD, ? 1.4) with 17 mol% of Cp‐groups bearing repeat unit is prepared via Grignard metathesis polymerization. The UV/Vis absorption and fluorescence (λex 450 nm) characteristics of polythiophene with pendant Cp‐groups (λmax 447 nm, λe‐max 576 nm) are comparable to the reference poly(3‐hexylthiophene) (λmax 450 nm, λe‐max 576 nm). The novel polythiophene with pendant Cp‐groups is capable of producing solvent‐stable free‐standing polythiophene films, and non‐solvent assisted self‐assemblies resulting in solvent‐stable nanoporous‐microstructures. 1H‐NMR spectroscopy reveals an efficient reaction of the pendant Cp‐groups with C60. The UV/Vis spectroscopic analyses of solution and thin films of the covalent and physical hybrids disclose closer donor‐acceptor packing in the case of covalent hybrids. AFM images evidence that the covalent hybrids form smooth films with finer lamellar‐organization. The effect is particularly remarkable in the case of poorly soluble C60. A significant enhancement in photo‐voltage is observed for all devices constituted of covalent hybrids, highlighting novel avenues to developing efficient electron donor‐acceptor combinations for light harvesting systems.  相似文献   

14.
The generation of green hydrogen (H2) energy using sunlight is of great significance to solve the worldwide energy and environmental issues. Particularly, photocatalytic H2 production is a highly promising strategy for solar‐to‐H2 conversion. Recently, various heterostructured photocatalysts with high efficiency and good stability have been fabricated. Among them, 2D/2D van der Waals (VDW) heterojunctions have received tremendous attention, since this architecture can promote the interfacial charge separation and transfer and provide massive reactive centers. On the other hand, currently, most photocatalysts are composed of metal elements with high cost, limited reserves, and hazardous environmental impact. Hence, the development of metal‐free photocatalysts is desirable. Here, a novel 2D/2D VDW heterostructure of metal‐free phosphorene/graphitic carbon nitride (g‐C3N4) is fabricated. The phosphorene/g‐C3N4 nanocomposite shows an enhanced visible‐light photocatalytic H2 production activity of 571 µmol h?1 g?1 in 18 v% lactic acid aqueous solution. This improved performance arises from the intimate electronic coupling at the 2D/2D interface, corroborated by the advanced characterizations techniques, e.g., synchrotron‐based X‐ray absorption near‐edge structure, and theoretical calculations. This work not only reports a new metal‐free phosphorene/g‐C3N4 photocatalyst but also sheds lights on the design and fabrication of 2D/2D VDW heterojunction for applications in catalysis, electronics, and optoelectronics.  相似文献   

15.
It is greatly intriguing yet remains challenging to construct single‐atomic photocatalysts with stable surface free energy, favorable for well‐defined atomic coordination and photocatalytic carrier mobility during the photoredox process. Herein, an unsaturated edge confinement strategy is defined by coordinating single‐atomic‐site Ni on the bottom‐up synthesized porous few‐layer g‐C3N4 (namely, Ni5‐CN) via a self‐limiting method. This Ni5‐CN system with a few isolated Ni clusters distributed on the edge of g‐C3N4 is beneficial to immobilize the nonedged single‐atomic‐site Ni species, thus achieving a high single‐atomic active site density. Remarkably, the Ni5‐CN system exhibits comparably high photocatalytic activity for CO2 reduction, giving the CO generation rate of 8.6 µmol g?1 h?1 under visible‐light illumination, which is 7.8 times that of pure porous few‐layer g‐C3N4 (namely, CN, 1.1 µmol g?1 h?1). X‐ray absorption spectrometric analysis unveils that the cationic coordination environment of single‐atomic‐site Ni center, which is formed by Ni‐N doping‐intercalation the first coordination shell, motivates the superiority in synergistic N–Ni–N connection and interfacial carrier transfer. The photocatalytic mechanistic prediction confirms that the introduced unsaturated Ni‐N coordination favorably binds with CO2, and enhances the rate‐determining step of intermediates for CO generation.  相似文献   

16.
The development of effective approaches for the preparation of 0D quantum dots (QDs)/2D nanosheets (NSs) heterostructures, which have been proven to be favorable for heterogeneous catalysis, is highly desirable but remains a great challenge. Herein, 0D metal oxide nanocrystals–2D ultrathin g‐C3N4 nanosheets (Co3O4/CNNS) heterostructures are synthesized via a facile chemical reaction, followed by annealing in air. Ultrafine Co3O4 QDs (≈2.2–3.2 nm) are uniformly and tightly attached on the surface of g‐C3N4 nanosheets. Detailed characterization reveals that the specially designed unique 0D/2D structure is critical to the high photocatalytic performance for the degradation of tetracycline (TC) via peroxymonosulfate (PMS) activation. The optimal catalyst, namely, Co3O4/CNNS‐1100, exhibits excellent performance and ≈98.7% TC can be degraded under visible light irradiation. Moreover, TC degradation is almost completely insusceptible to several real water samples. Meanwhile, other dye pollutants can also be efficiently degraded by the Co3O4/CNNS‐1100/PMS/vis system. The quenching tests display that that the h+, ?OH, O2??, and SO4?? are responsible for TC removal. The improved photocatalytic performance can be attributed to the synergistic effect of the photocatalytic‐ and chemical‐processes in the PMS activation. This work gives an insight into the development of multifunctional 0D/2D nanocomposites for further potential applications which are not limited to environmental purification.  相似文献   

17.
In molecular electronics, it is important to control the strength of the molecule–electrode interaction to balance the trade‐off between electronic coupling strength and broadening of the molecular frontier orbitals: too strong coupling results in severe broadening of the molecular orbitals while the molecular orbitals cannot follow the changes in the Fermi levels under applied bias when the coupling is too weak. Here, a platform based on graphene bottom electrodes to which molecules can bind via π–π interactions is reported. These interactions are strong enough to induce electronic function (rectification) while minimizing broadening of the molecular frontier orbitals. Molecular tunnel junctions are fabricated based on self‐assembled monolayers (SAMs) of Fc(CH2)11X (Fc = ferrocenyl, X = NH2, Br, or H) on graphene bottom electrodes contacted to eutectic alloy of gallium and indium top electrodes. The Fc units interact more strongly with graphene than the X units resulting in SAMs with the Fc at the bottom of the SAM. The molecular diodes perform well with rectification ratios of 30–40, and they are stable against bias stressing under ambient conditions. Thus, tunnel junctions based on graphene with π–π molecule–electrode coupling are promising platforms to fabricate stable and well‐performing molecular diodes.  相似文献   

18.
A series of rod‐like porous graphitic‐carbon nitrides (short as CNs) with enhanced in‐plane ordering have been fabricated through self‐assembled heptazine hydrate precursors for the first time. By controlling the calcination of the preformed precursors with different temperature‐rising rates, the resulted CNs (SAHEP‐CNs‐1) with the most ordered and least stacked graphitic planar are showing a tremendously improved hydrogen evolution rate of 420 μmol h?1 under visible light and a remarkable apparent quantum efficiency of 8.9% at 420 nm, which is among the highest values for C3N4‐related photocatalysts in the literature. This work discloses that enhancing in‐plane ordering is one critical factor for improving the photocatalytic H2 evolution of carbon nitride, which is an effective solution to prolong the lifetime of charge carriers by accelerating the charge transport and separation within the graphitic planar. This finding would present a facial strategy for the designing of efficient organic semiconductors for photocatalysis.  相似文献   

19.
In artificial photocatalytic hydrogen evolution, effective incident photon absorption and a high‐charge recombination rate are crucial factors influencing the overall efficiency. Herein, a traditional solid‐state synthesis is used to obtain, for the first time, novel samples of few‐layered g‐C3N4 with vertically aligned MoS2 loading (MoS2/C3N4). Thiourea and layered MoO3 are chosen as precursors, as they react under nitrogen atmosphere to in situ produce the products. According to the quasi‐Fourier transform infrared reflectance and X‐ray diffraction measurements, the detailed reaction process is determined to proceed through the confirmed formation pathway. The two precursor units MoS2 and C3N4 are linked by Mo? N bonds, which act as electronic receivers/conductors and hydrogen‐generation sites. Density functional theory is also carried out, which determines that the interface sites act as electron‐accumulation regions. According to the photoelectrochemical results, MoS2/C3N4 can achieve a current of 0.05 mA cm?2, which is almost ten times higher than that of bare g‐C3N4 or the MoS2/C3N4‐R reference samples. The findings in the present work pave the way to not only synthesize a series of designated samples but also thoroughly understand the solid‐state reaction.  相似文献   

20.
The exploitation of photocatalysts that harvest solar spectrum as broad as possible remains a high‐priority target yet grand challenge. In this work, for the first time, metal–organic framework (MOF) composites are rationally fabricated to achieve broadband spectral response from UV to near‐infrared (NIR) region. In the core–shell structured upconversion nanoparticles (UCNPs)‐Pt@MOF/Au composites, the MOF is responsive to UV and a bit visible light, the plasmonic Au nanoparticles (NPs) accept visible light, whereas the UCNPs absorb NIR light to emit UV and visible light that are harvested by the MOF and Au once again. Moreover, the MOF not only facilitates the generation of “bare and clean” Au NPs on its surface and realizes the spatial separation for the Au and Pt NPs, but also provides necessary access for catalytic substrates/products to Pt active sites. As a result, the optimized composite exhibits excellent photocatalytic hydrogen production activity (280 µmol g?1 h?1) under simulated solar light, and the involved mechanism of photocatalytic H2 production under UV, visible, and NIR irradiation is elucidated. Reportedly, this is an extremely rare study on photocatalytic H2 production by light harvesting in all UV, visible, and NIR regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号