首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
Recently, organometal halide perovskite‐based optoelectronics, particularly lasers, have attracted intensive attentions because of its outstanding spectral coherence, low threshold, and wideband tunability. In this work, high‐quality CH3NH3PbBr3 single crystals with a unique shape of cube‐corner pyramids are synthesized on mica substrates using chemical vapor deposition method. These micropyramids naturally form cube‐corner cavities, which are eminent candidates for small‐sized resonators and retroreflectors. The as‐grown perovskites show strong emission ≈530 nm in the vertical direction at room temperature. A special Fabry–Pérot (F–P) mode is employed to interpret the light confinement in the cavity. Lasing from the perovskite pyramids is observed from 80 to 200 K, with threshold ranging from ≈92 µJ cm?2 to 2.2 mJ cm?2, yielding a characteristic temperature of T0 = 35 K. By coating a thin layer of Ag film, the threshold is reduced from ≈92 to 26 µJ cm?2, which is accompanied by room temperature lasing with a threshold of ≈75 µJ cm?2. This work advocates the prospect of shape‐engineered perovskite crystals toward developing micro‐sized optoelectronic devices and potentially investigating light–matter coupling in quantum optics.  相似文献   

2.
Alloying in group V 2D materials and heterostructures is an effective degree of freedom to tailor and enhance their physical properties. Up to date, black arsenic‐phosphorus is the only 2D group V alloy that has been experimentally achieved by exfoliation, leaving all other possible alloys in the realm of theoretical predictions. Herein, the existence of an additional alloy consisting of 2D antimony arsenide (2D‐AsxSb1?x) grown by molecular beam epitaxy on group IV semiconductor substrates and graphene is demonstrated. The atomic mixing of As and Sb in the lattice of the grown 2D layers is confirmed by low‐energy electron diffraction, Raman spectroscopy, and X‐ray photoelectron spectroscopy. The As content in 2D‐AsxSb1?x is shown to depend linearly on the As4/Sb4 deposition rate ratio and As concentrations up to 15 at% are reached. The grown 2D alloys are found to be stable in ambient conditions in a timescale of weeks but to oxidize after longer exposure to air. This study lays the groundwork for a better control of the growth and alloying of group V 2D materials, which is critical to study their basic physical properties and integrate them in novel applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号