首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Atom‐scale modulation of electronic regulation in nonprecious‐based electrocatalysts is promising for efficient catalytic activities. Here, hierarchically hollow VOOH nanostructures are rationally constructed by partial iron substitution and systematically investigated for electrocatalytic water splitting. Benefiting from the hierarchically stable scaffold configuration, highly electrochemically active surface area, the synergistic effect of the active metal atoms, and optimal adsorption energies, the 3% Fe (mole ratio) substituted electrocatalyst (VOOH‐3Fe) exhibits a low overpotential of 90 and 195 mV at 10 mA cm?2 for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in alkaline media, respectively, superior than the other samples with a different substituted ratio. To the best of current knowledge, 195 mV overpotential at 10 mA cm?2 is the best value reported for V or Fe (oxy)hydroxide‐based OER catalysts. Moreover, the electrolytic cell employing the VOOH‐3Fe electrode as both the cathode and anode exhibits a cell voltage of 0.30 V at 10 mA cm?2 with a remarkable stability over 60 h. This work heralds a new pathway to design efficient bifunctional catalysts toward overall water splitting.  相似文献   

2.
Low cost and highly efficient bifuctional catalysts for overall water electrolysis have drawn considerable interests over the past several decades. Here, rationally synthesized mesoporous nanorods of nickel–cobalt–iron–sulfur–phosphorus composites are tightly self‐supported on Ni foam as a high‐performance, low cost, and stable bifunctional electrocatalyst for water electrolysis. The targeted designing and rational fabrication give rise to the nanorod‐like morphology with large surface area and excellent conductivity. The NiCoFe‐PS nanorod/NF can reach 10 mA cm?2 at a small overpotential of 195 mV with a Tafel slope of 40.3 mV dec?1 for the oxygen evolution reaction and 97.8 mV with 51.8 mV dec?1 for the hydrogen evolution reaction. Thus, this bifunctional catalyst shows low potentials of 1.52 and 1.76 V at 10 and 50 mA cm?2 toward overall water splitting with excellent stability for over 200 h, which are superior to most non‐noble metal‐based bifunctional electrocatalysts recently. This work provides a new strategy to fabricate multiple metal‐P/S composites with the mesoporous nanorod‐like structure as bifunctional catalysts for overall water splitting.  相似文献   

3.
An earth‐abundant and highly efficient electrocatalyst is essential for oxygen evolution reaction (OER) due to its poor kinetics. Layered double hydroxide (LDH)‐based nanomaterials are considered as promising electrocatalysts for OER. However, the stacking structure of LDHs limits the exposure of the active sites. Therefore, the exfoliation is necessary to expose more active sites. In addition, the defect engineering is proved to be an efficient strategy to enhance the performance of OER electrocatalysts. For the first time, this study prepares ultrathin CoFe LDHs nanosheets with multivacancies as OER electrocatalysts by water‐plasma‐enabled exfoliation. The water plasma can destroy the electrostatic interactions between the host metal layers and the interlayer cations, resulting in the fast exfoliation. On the other hand, the etching effect of plasma can simultaneously and effectively produce multivacancies in the as‐exfoliated ultrathin LDHs nanosheets. The increased active sites and the multivacancies significantly contribute to the enhanced electrocatalytic activity for OER. Compared to pristine CoFe LDHs, the as‐exfoliated ultrathin CoFe LDHs nanosheets exhibit excellent catalytic activity for OER with a ultralow overpotential of only 232 mV at 10 mA cm?2 and possesses outstanding kinetics (the Tafel slope of 36 mV dec?1). This work provides a novel strategy to exfoliate LDHs and to produce multivacancies simultaneously as highly efficient electrocatalysts for OER.  相似文献   

4.
The design of high‐efficiency non‐noble bifunctional electrocatalysts for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is paramount for water splitting technologies and associated renewable energy systems. Spinel‐structured oxides with rich redox properties can serve as alternative low‐cost OER electrocatalysts but with poor HER performance. Here, zirconium regulation in 3D CoFe2O4 (CoFeZr oxides) nanosheets on nickel foam, as a novel strategy inducing bifunctionality toward OER and HER for overall water splitting, is reported. It is found that the incorporation of Zr into CoFe2O4 can tune the nanosheet morphology and electronic structure around the Co and Fe sites for optimizing adsorption energies, thus effectively enhancing the intrinsic activity of active sites. The as‐synthesized 3D CoFeZr oxide nanosheet exhibits high OER activity with small overpotential, low Tafel slope, and good stability. Moreover, it shows unprecedented HER activity with a small overpotential of 104 mV at 10 mA cm?2 in alkaline media, which is better than ever reported counterparts. When employing the CoFeZr oxides nanosheets as both anode and cathode catalysts for overall water splitting, a current density of 10 mA cm?2 is achieved at the cell voltage of 1.63 V in 1.0 m KOH.  相似文献   

5.
Carbides are commonly regarded as efficient hydrogen evolution reaction (HER) catalysts, but their poor oxygen evolution reaction (OER) catalytic activities seriously limit their practical application in overall water splitting. Here, vertically aligned porous cobalt tungsten carbide nanosheet embedded in N‐doped carbon matrix (Co6W6C@NC) is successfully constructed on flexible carbon cloth (CC) as an efficient bifunctional electrocatalyst for overall water splitting via a facile metal–organic framework (MOF) derived method. The synergistic effect of Co and W atoms effectively tailors the electron state of carbide, optimizing the hydrogen‐binding energy. Thus Co6W6C@NC shows an enhanced HER performance with an overpotential of 59 mV at a current density of ?10 mA cm?2. Besides, Co6W6C@NC easily in situ transforms into tungsten actived cobalt oxide/hydroxide during the OER process, serving as OER active species, which provides an excellent OER activity with an overpotential of 286 mV at a current density of ?10 mA cm?2. The water splitting device, by applying Co6W6C@NC as both the cathode and anode, requires a low cell voltage of 1.585 V at 10 mA cm?2 with the great stability in alkaline solution. This work provides a feasible strategy to fabricate bimetallic carbides and explores their possibility as bifunctional catalysts toward overall water splitting.  相似文献   

6.
Exploring efficient and earth‐abundant electrocatalysts is of great importance for electrocatalytic and photoelectrochemical hydrogen production. This study demonstrates a novel ternary electrocatalyst of porous cobalt phosphoselenide nanosheets prepared by a combined hydrogenation and phosphation strategy. Benefiting from the enhanced electric conductivity and large surface area, the ternary nanosheets supported on electrochemically exfoliated graphene electrodes exhibit excellent catalytic activity and durability toward hydrogen evolution in alkali, achieving current densities of 10 and 20 mA cm?2 at overpotentials of 150 and 180 mV, respectively, outperforming those reported for transition metal dichalcogenides and first‐row transition metal pyrites catalysts. Theoretical calculations reveal that the synergistic effects of Se vacancies and subsequent P displacements of Se atoms around the vacancies in the resulting cobalt phosphoselenide favorably change the electronic structure of cobalt selenide, assuring a rapid charge transfer and optimal energy barrier of hydrogen desorption, and thus promoting the proton kinetics. The overall‐water‐splitting with 10 mA cm?2 at a low voltage of 1.64 V is achieved using the ternary electrode as both the anode and cathode, and the performance surpasses that of the Ir/C–Pt/C couple for sufficiently high overpotentials. Moreover, the integration of ternary nanosheets with macroporous silicon enables highly efficient solar‐driven photoelectrochemical hydrogen production.  相似文献   

7.
Developing low‐cost bifunctional electrocatalysts with superior activity for both the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is of great importance for the widespread application of the water splitting technique. In this work, using earth‐abundant transition metals (i.e., nickel, iron, and copper), 3D hierarchical nanoarchitectures, consisting of ultrathin Ni–Fe layered‐double‐hydroxide (Ni–Fe LDH) nanosheets or porous Ni–Fe oxides (NiFeOx) assembled to a metallic NiCu alloy, are delicately constructed. In alkaline solution, the as‐prepared Ni–Fe LDH@NiCu possesses outstanding OER activity, achieving a current density of 10 mA cm?2 at an overpotential of 218 mV, which is smaller than that of RuO2 catalyst (249 mV). In contrast, the resulting NiFeOx@NiCu exhibits better HER activity, yielding a current density of 10 mA cm?2 at an overpotential of 66 mV, which is slightly higher than that of Pt catalyst (53 mV) but superior to all other transition metal (hydr)oxide‐based electrocatalysts. The remarkable activity of the Ni–Fe LDH@NiCu and NiFeOx@NiCu is further demonstrated by a 1.5 V solar‐panel‐powered electrolyzer, resulting in current densities of 10 and 50 mA cm?2 at overpotentials of 293 and 506 mV, respectively. Such performance renders the as‐prepared materials as the best bifunctional electrocatalysts so far.  相似文献   

8.
Owing to its earth abundance, low kinetic overpotential, and superior stability, NiFe‐layered double hydroxide (NiFe‐LDH) has emerged as a promising electrocatalyst for catalyzing water splitting, especially oxygen evolution reaction (OER), in alkaline solutions. Unfortunately, as a result of extremely sluggish water dissociation kinetics (Volmer step), hydrogen evolution reaction (HER) activity of the NiFe‐LDH is rather poor in alkaline environment. Here a novel strategy is demonstrated for substantially accelerating the hydrogen evolution kinetics of the NiFe‐LDH by partially substituting Fe atoms with Ru. In a 1 m KOH solution, the as‐synthesized Ru‐doped NiFe‐LDH nanosheets (NiFeRu‐LDH) exhibit excellent HER performance with an overpotential of 29 mV at 10 mA cm?2, which is much lower than those of noble metal Pt/C and reported electrocatalysts. Both experimental and theoretical results reveal that the introduction of Ru atoms into NiFe‐LDH can efficiently reduce energy barrier of the Volmer step, eventually accelerating its HER kinetics. Benefitting from its outstanding HER activity and remained excellent OER activity, the NiFeRu‐LDH steadily drives an alkaline electrolyzer with a current density of 10 mA cm?2 at a cell voltage of 1.52 V, which is much lower than the values for Pt/C–Ir/C couple and state‐of‐the‐art overall water‐splitting electrocatalysts.  相似文献   

9.
Rational design and synthesis of bifunctional electrocatalysts with high efficiency and low‐cost for overall water splitting is still a challenge. A simple approach is reported to prepare a phosphorus and yttrium codoped cobalt hydroxyfluoride (YP‐Co(OH)F) nanoarray on nickel foam, which displays high‐performance for both hydrogen evolution reaction (HER) and oxygen evolution reaction in alkaline solution. The codoping of yttrium and phosphorus into Co(OH)F leads to a tuned electronic environment and favorable electron transfer, thus resulting in superior water splitting activity. The YP‐Co(OH)F electrode only requires an overpotential of 238 mV to reach a current density of 10 mA cm?210), much smaller than RuO2 (302 mV). Moreover, it displays an overpotential of 55 mV at η10 for HER, similar to that of Pt/C. When YP‐Co(OH)F is used as both anode and cathode in a two‐electrode configuration, it only demands a cell potential of 1.54 V at η10, lower than the IrO2||Pt/C couple (1.6 V) as well as other recently reported electrocatalysts. It even maintains stable water splitting for 300 h. Such a two‐electrode device can be easily driven by a 1.5 V silicon solar cell in sunlight, proving the potential of the promising catalyst for large‐scale electrolytic water splitting.  相似文献   

10.
Herein, the hydrothermal synthesis of porous ultrathin ternary NiFeV layer double hydroxides (LDHs) nanosheets grown on Nickel foam (NF) substrate as a highly efficient electrode toward overall water splitting in alkaline media is reported. The lateral size of the nanosheets is about a few hundreds of nanometers with the thickness of ≈10 nm. Among all molar ratios investigated, the Ni0.75Fe0.125V0.125‐LDHs/NF electrode depicts the optimized performance. It displays an excellent catalytic activity with a modest overpotential of 231 mV for the oxygen evolution reaction (OER) and 125 mV for the hydrogen evolution reaction (HER) in 1.0 m KOH electrolyte. Its exceptional activity is further shown in its small Tafel slope of 39.4 and 62.0 mV dec?1 for OER and HER, respectively. More importantly, remarkable durability and stability are also observed. When used for overall water splitting, the Ni0.75Fe0.125V0.125‐LDHs/NF electrodes require a voltage of only 1.591 V to reach 10 mA cm?2 in alkaline solution. These outstanding performances are mainly attributed to the synergistic effect of the ternary metal system that boosts the intrinsic catalytic activity and active surface area. This work explores a promising way to achieve the optimal inexpensive Ni‐based hydroxide electrocatalyst for overall water splitting.  相似文献   

11.
The development of cost‐efficient, active, and stable electrode materials as bifunctional catalysts for electrochemical water splitting is crucial to high‐performance renewable energy storage and conversion devices. In this work, the synthesis of Co‐based multi‐metal borides nanochains with amorphous structure is reported for boosting the oxygen evolution (OER) and hydrogen evolution reactions (HER) by one‐pot NaBH4 reduction of Co2+, Ni2+, and Fe2+ under ambient temperature. In all the investigated Co‐based metal borides, NiCoFeB nanochains show the excellent OER performance with a low overpotential of 284 mV at 10 mA cm‐2 and Tafel slope of 46 mV dec‐1, respectively, together with excellent catalytic stability, and robust HER performance with an overpotential of 345 mV at 10 mA cm‐2. The density functional theory (DFT) calculations reveal that the excellent electrocatalytic performance is mainly attributed to optimal electronic structure by tuning the Co‐3d band activities by the incorporation of Ni and Fe for enhanced water splitting via the potentially existed Co0 state. Moreover, the electrolyzer using NiCoFeB nanochains as anode and cathode offers 10 mA cm‐2 at a cell voltage of 1.81 V, comparable to commercial Pt/C // Ir/C, providing a simple method to design and explore highly efficient and cheap bifunctional electrocatalysts for overall water splitting.  相似文献   

12.
A noble‐metal‐free electrocatalyst is fabricated via in situ formation of nanocomposite of nitrogen‐doped graphene quantum dots (NGQDs) and Ni3S2 nanosheets on the Ni foam (Ni3S2‐NGQDs/NF). The resultant Ni3S2‐NGQDs/NF can serve as an active, binder‐free, and self‐supported catalytic electrode for direct water splitting, which delivers a current density of 10 mA cm?2 at an overpotential of 216 mV for oxygen evolution reaction and 218 mV for hydrogen evolution reaction in alkaline media. This bifunctional electrocatalyst enables the construction of an alkali electrolyzer with a low cell voltage of 1.58 V versus reversible hydrogen electrode (RHE) at 10 mA cm?2. The experimental results and theoretical calculations demonstrate that the synergistic effects of the constructed active interfaces are the key factor for excellent performance. The nanocomposite of NGQDs and Ni3S2 nanosheets can be promising water splitting electrocatalyst for large‐scale hydrogen generation or other energy storage and conversion applications.  相似文献   

13.
Among the bifunctional catalysts for water splitting, recently emerged transition‐metal single‐atom catalysts are theoretically considered to possess high potential, while the experimental activity is not satisfactory yet. Herein, an exceptionally efficient trifunctional metal–nitrogen–carbon (M–N–C) catalyst electrode, composed of a hierarchical carbon matrix embedding isolated nickel atoms with nickel–iron (NiFe) clusters, is presented. 1D microfibers and nanotubes grow sequentially from 2D nanosheets as sacrificial templates via two stages of solution‐ and solid‐phase reactions to form a 1D hierarchy. Exceptionally efficient bifunctional activity with an overpotential of only 13 mV at 10 mA cm?2 toward hydrogen evolution reaction (HER) and an overpotential of 210 mV at 30 mA cm?2 toward oxygen evolution reaction (OER) is obtained, surpassing each monofunctional activity ever reported. More importantly, an overpotential of only 126 and 326 mV is required to drive 500 mA cm?2 toward the HER and OER, respectively. For the first time, industrial‐scale water splitting with two bifunctional catalyst electrodes with a current density of 500 mA cm?2 at a potential of 1.71 V is demonstrated. Lastly, trifunctional catalytic activity including oxygen reduction reaction is also proven with a half‐wave potential at 0.848 V.  相似文献   

14.
Exploring effective electrocatalysts is a crucial requirement for boosting the efficiency of water splitting to obtain clean fuels. Here, a self‐templating strategy is reported to synthesize Ni–Fe mixed diselenide cubic nanocages for the electrocatalytic oxygen evolution reaction (OER). The diselenide nanocages are derived from corresponding Prussian‐blue analog nanocages, which are first obtained by treating the nanocube precursor with a site‐selective ammonia etchant. The resulting Ni–Fe mixed diselenide nanocages perform as a superior OER electrocatalyst, which affords a current density of 10 mA cm?2 at a small overpotential of 240 mV; a high current density, mass activity, and turnover frequency of 100 mA cm?2, 1000 A g?1, and 0.58 s?1, respectively, at the overpotential of 270 mV; a Tafel slope as small as 24 mV dec?1; and excellent stability in alkaline medium.  相似文献   

15.
Electrochemical water splitting to produce hydrogen and oxygen, as an important reaction for renewable energy storage, needs highly efficient and stable catalysts. Herein, FeS2/CoS2 interface nanosheets (NSs) as efficient bifunctional electrocatalysts for overall water splitting are reported. The thickness and interface disordered structure with rich defects of FeS2/CoS2 NSs are confirmed by atomic force microscopy and high‐resolution transmission electron microscopy. Furthermore, extended X‐ray absorption fine structure spectroscopy clarifies that FeS2/CoS2 NSs with sulfur vacancies, which can further increase electrocatalytic performance. Benefiting from the interface nanosheets' structure with abundant defects, the FeS2/CoS2 NSs show remarkable hydrogen evolution reaction (HER) performance with a low overpotential of 78.2 mV at 10 mA cm−2 and a superior stability for 80 h in 1.0 m KOH, and an overpotential of 302 mV at 100 mA cm−2 for the oxygen evolution reaction (OER). More importantly, the FeS2/CoS2 NSs display excellent performance for overall water splitting with a voltage of 1.47 V to achieve current density of 10 mA cm−2 and maintain the activity for at least 21 h. The present work highlights the importance of engineering interface nanosheets with rich defects based on transition metal dichalcogenides for boosting the HER and OER performance.  相似文献   

16.
Low‐cost and high‐performance catalysts are of great significance for electrochemical water splitting. Here, it is reported that a laser‐synthesized catalyst, porous Co0.75Ni0.25(OH)2 nanosheets, is highly active for catalyzing overall water splitting. The porous nanosheets exhibit low overpotentials for hydrogen evolution reaction (95 mV@10 mA cm?2) and oxygen evolution reaction (235 mV@10 mA cm?2). As both anode and cathode catalysts, the porous nanosheets achieve a current density of 10 mA cm?2 at an external voltage of 1.56 V, which is much lower than that of commercial Ir/C‐Pt/C couple (1.62 V). Experimental and theoretical investigations reveal that numerous Co3+ ions are generated on the pore wall of nanosheets, and the unique atomic structure around Co3+ ions leads to appropriate electronic structure and adsorption energy of intermediates, thus accelerating hydrogen and oxygen evolution.  相似文献   

17.
Exploring highly efficient and low‐cost electrocatalysts for electrochemical water splitting is of importance for the conversion of intermediate energy. Herein, the synthesis of dual‐cation (Fe, Co)‐incorporated NiSe2 nanosheets (Fe, Co‐NiSe2) and systematical investigation of their electrocatalytic performance for water splitting as a function of the composition are reported. The dual‐cation incorporation can distort the lattice and induce stronger electronic interaction, leading to increased active site exposure and optimized adsorption energy of reaction intermediates compared to single‐cation‐doped or pure NiSe2. As a result, the obtained Fe0.09Co0.13‐NiSe2 porous nanosheet electrode shows an optimized catalytic activity with a low overpotential of 251 mV for oxygen evolution reaction and 92 mV for hydrogen evolution reaction (both at 10 mA cm?2 in 1 m KOH). When used as bifunctional electrodes for overall water splitting, the current density of 10 mA cm?2 is achieved at a low cell voltage of 1.52 V. This work highlights the importance of dual‐cation doping in enhancing the electrocatalyst performance of transition metal dichalcogenides.  相似文献   

18.
Heteroatom-doped transition metal-oxides of high oxygen evolution reaction (OER) activities interfaced with metals of low hydrogen adsorption energy barrier for efficient hydrogen evolution reaction (HER) when uniformly embedded in a conductive nitrogen-doped carbon (NC) matrix, can mitigate the low-conductivity and high-agglomeration of metal-nanoparticles in carbon matrix and enhances their bifunctional activities. Thus, a 3D mesoporous heterostructure of boron (B)-doped cobalt-oxide/cobalt-metal nanohybrids embedded in NC and grown on a Ni foam substrate (B-CoO/Co@NC/NF) is developed as a binder-free bifunctional electrocatalyst for alkaline water-splitting via a post-synthetic modification of the metal–organic framework and subsequent annealing in different Ar/H2 gas ratios. B-CoO/Co@NC/NF prepared using 10% H2 gas (B-CoO/Co@NC/NF [10% H2]) shows the lowest HER overpotential (196 mV) and B-CoO/Co@NC/NF (Ar), developed in Ar, shows an OER overpotential of 307 mV at 10 mA cm−2 with excellent long-term durability for 100 h. The best anode and cathode electrocatalyst-based electrolyzer (B-CoO/Co@NC/NF (Ar)(+)//B-CoO/Co@NC/NF (10% H2)(−)) generates a current density of 10 mA cm−2 with only 1.62 V with long-term stability. Further, density functional theory investigations demonstrate the effect of B-doping on electronic structure and reaction mechanism of the electrocatalysts for optimal interaction with reaction intermediates for efficient alkaline water-splitting which corroborates the experimental results.  相似文献   

19.
The efficiency of splitting water into hydrogen and oxygen is highly dependent on the catalyst used. Herein, ultrathin Ni(0)-embedded Ni(OH)2 heterostructured nanosheets, referred to as Ni/Ni(OH)2 nanosheets, with superior water splitting activity are synthesized by a partial reduction strategy. This synthetic strategy confers the heterostructured Ni/Ni(OH)2 nanosheets with abundant Ni(0)-Ni(II) active interfaces for hydrogen evolution reaction (HER) and Ni(II) defects as transitional active sites for oxygen evolution reaction (OER). The obtained Ni/Ni(OH)2 nanosheets exhibit noble metal-like electrocatalytic activities toward overall water splitting in alkaline condition, to offer 10 mA cm−2 in HER and OER, the required overpotentials are only 77 and 270 mV, respectively. Based on such an outstanding activity, a water splitting electrolysis cell using the Ni/Ni(OH)2 nanosheets as the cathode and anode electrocatalysts has been successfully built. When the output voltage of the electrolytic cell is 1.59 V, a current density of 10 mA cm−2 can be obtained. Moreover, the durability of Ni/Ni(OH)2 nanosheets in the alkaline electrolyte is much better than that of noble metals. No obvious performance decay is observed after 20 h of catalysis. This facile strategy paves the way for designing highly active non-precious-metal catalyst to generate both hydrogen and oxygen by electrolyzing water at room temperature.  相似文献   

20.
The electrocatalytic oxygen evolution reaction (OER) is a highly important reaction that requires a relatively high overpotential and determines the rate of water splitting—a process for producing hydrogen. The overall OER performance is often largely limited by uncontrollable interface when active catalysts are loaded on conductive supports, for which polymer binders are widely used, but inevitably block species transportation channels. Here, a scalable fabrication approach to freestanding graphitized carbon nanofiber networks is reported, which provides abundant sites for in situ growing Fe/Ni catalysts with the improved interface. The fabricated hybrid membrane exhibits high activity and durability toward OER, with an overpotential of 280 mV at a geometrical current density of 10 mA cm?2 and a Tafel slope of 30 mV dec?1 in alkaline medium. As implemented as a freestanding electrode, the 3D hybrid structure achieves further enhanced OER performance with an overpotential down to 215 mV at 10 mA cm?2. This work provides fresh insights into rationally fabricating OER electrocatalysts from the angle of electrode design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号