首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
One approach for making inexpensive inorganic–organic hybrid photovoltaic (PV) cells is to fill highly ordered TiO2 nanotube (NT) arrays with solid organic hole conductors such as conjugated polymers. Here, a new in situ UV polymerization method for growing polythiophene (UV‐PT) inside TiO2 NTs is presented and compared to the conventional approach of infiltrating NTs with pre‐synthesized polymer. A nanotubular TiO2 substrate is immersed in a 2,5‐diiodothiophene (DIT) monomer precursor solution and then irradiated with UV light. The selective UV photodissociation of the C? I bond produces monomer radicals with intact π‐ring structure that further produce longer oligothiophene/PT molecules. Complete photoluminescence quenching upon UV irradiation suggests coupling between radicals created from DIT and at the TiO2 surface via a charge transfer complex. Coupling with the TiO2 surface improves UV‐PT crystallinity and ππ stacking; flat photocurrent values show that charge recombination during hole transport through the polymer is negligible. A non‐ideal, backside‐illuminated setup under illumination of 620‐nm light yields a photocurrent density of ≈5 µA cm2—surprisingly much stronger than with comparable devices fabricated with polymer synthesized ex situ. Since in this backside architecture setup we illuminate the cell through the Ag top electrode, there is a possibility for Ag plasmon‐enhanced solar energy conversion. By using this simple in situ UV polymerization method that couples the conjugated polymer to the TiO2 surface, the absorption of sunlight can be improved and the charge carrier mobility of the photoactive layer can be enhanced.  相似文献   

2.
Recently, an emergent layered material Td‐WTe2 was explored for its novel electron–hole overlapping band structure and anisotropic inplane crystal structure. Here, the photoresponse of mechanically exfoliated WTe2 flakes is investigated. A large anomalous current decrease for visible (514.5 nm), and mid‐ and far‐infrared (3.8 and 10.6 µm) laser irradiation is observed, which can be attributed to light‐induced surface bandgap opening from the first‐principles calculations. The photocurrent and responsivity can be as large as 40 µA and 250 A W?1 for a 3.8 µm laser at 77 K. Furthermore, the WTe2 anomalous photocurrent matches its in‐plane crystal structure and exhibits light polarization dependence, maximal for linear laser polarization along the W atom chain a direction and minimal for the perpendicular b direction, with the anisotropic ratio of 4.9. Consistently, first‐principles calculations confirm the angle‐dependent bandgap opening of WTe2 under polarized light irradiation. The anomalous and polarization‐sensitive photoresponses suggest that linearly polarized light can significantly tune the WTe2 surface electronic structure, providing a potential approach to detect polarized and broadband lights up to far infrared range.  相似文献   

3.
To achieve excellent photoelectrochemical water‐splitting activity, photoanode materials with high light absorption and good charge‐separation efficiency are essential. One effective strategy for the production of materials satisfying these requirements is to adjust their band structure and corresponding bandgap energy by introducing oxygen vacancies. A simple chemical reduction method that can systematically generate oxygen vacancies in barium stannate (BaSnO3 (BSO)) crystal is introduced, which thus allows for precise control of the bandgap energy. A BSO photoanode with optimum oxygen‐vacancy concentration (8.7%) exhibits high light‐absorption and good charge‐separation capabilities. After deposition of FeOOH/NiOOH oxygen evolution cocatalysts on its surface, this photoanode shows a remarkable photocurrent density of 7.32 mA cm?2 at a potential of 1.23 V versus a reversible hydrogen electrode under AM1.5G simulated sunlight. Moreover, a tandem device constructed with a perovskite solar cell exhibits an operating photocurrent density of 6.84 mA cm?2 and stable gas production with an average solar‐to‐hydrogen conversion efficiency of 7.92% for 100 h, thus functioning as an outstanding unbiased water‐splitting system.  相似文献   

4.
Phototransistors with a structure of a nitrogen‐doped graphene quantum dots (NGQDs)–perovskite composite layer and a mildly reduced graphene oxide (mrGO) layer are fabricated through a solution‐processing method. This hybrid phototransistor exhibits broad detection range (from 365 to 940 nm), high photoresponsivity (1.92 × 104 A W?1), and rapid response to light on–off (≈10 ms). NGQDs offer an effective and fast path for electron transfer from the perovskite to the mrGO, resulting in the improvement of photocurrent and photoswitching characteristics. The high photoresponsivity can also be ascribed to a photogating effect in the device. In addition, the phototransistor shows good stability with poly(methyl methacrylate) encapsulation, and can maintain 85% of its initial performance for 20 d in ambient air.  相似文献   

5.
A feasible strategy for hybrid photodetector by integrating an array of self‐ordered TiO2 nanotubes (NTs) and selenium is demonstrated to break the compromise between the responsivity and response speed. Novel heterojunction between the TiO2 NTs and Se in combination with the surface trap states at TiO2 help regulate the electron transport and facilitate the separation of photogenerated electron–hole pairs under photovoltaic mode (at zero bias), leading to a high responsivity of ≈100 mA W?1 at 620 nm light illumination and the ultrashort rise/decay time (1.4/7.8 ms). The implanting of intrinsic p‐type Se into TiO2 NTs broadens the detection range to UV–visible (280–700 nm) with a large detectivity of over 1012 Jones and a high linear dynamic range of over 80 dB. In addition, a maximum photocurrent of ≈107 A is achieved at 450 nm light illumination and an ultrahigh photosensitivity (on/off ratio up to 104) under zero bias upon UV and visible light illumination is readily achieved. The concept of employing novel heterojunction geometry holds great potential to pave a new way to realize high performance and energy‐efficient optoelectronic devices for practical applications.  相似文献   

6.
TiO2, CdS and ZnS nanoparticles that disperse stably in organic solvents are synthesized. Poly(N-vinylcarbazole) films doped with the n-type semiconductor nanoparticles are prepared with a cast method. The films exhibit a transient photocurrent when irradiated by a light pulse and act such as a diode when AC voltage is applied under continuous illumination. The transient photocurrent response and diode-like properties are significantly different depending on the kind of the nanoparticles and their amounts. The films doped with TiO2 and CdS nanoparticles increase the transient photocurrent at lower doped amounts, which is remarkable for TiO2-doped films. Time of flight analysis of the transient photocurrent shows that mobility of hole in PVK increases with increase in the amount of CdS and TiO2. From the studies on the diode-like properties, the current increase at lower dopant concentration is concluded to be due to increase in the amount of holes by an electron transfer from PVK to the photo-excited nanoparticles. At higher doping with CdS nanoparticles, main charge carrier of the films is found to change from holes to electrons.  相似文献   

7.
Ultraviolet (UV) photodetectors based on ZnO nanostructure/graphene (Gr) hybrid‐channel field‐effect transistors (FETs) are investigated under illumination at various incident photon intensities and wavelengths. The time‐dependent behaviors of hybrid‐channel FETs reveal a high sensitivity and selectivity toward the near‐UV region at the wavelength of 365 nm. The devices can operate at low voltage and show excellent selectivity, high responsivity (RI ), and high photoconductive gain (G). The change in the transfer characteristics of hybrid‐channel FETs under UV light illumination allows to detect both photovoltage and photocurrent. The shift of the Dirac point (V Dirac) observed during UV exposure leads to a clearer explanation of the response mechanism and carrier transport properties of Gr, and this phenomenon permits the calculation of electron concentration per UV power density transferred from ZnO nanorods and ZnO nanoparticles to Gr, which is 9 × 1010 and 4 × 1010 per mW, respectively. The maximum values of RI and G infer from the fitted curves of RI and G versus UV intensity are 3 × 105 A W?1 and 106, respectively. Therefore, the hybrid‐channel FETs studied herein can be used as UV sensing devices with high performance and low power consumption, opening up new opportunities for future optoelectronic devices.  相似文献   

8.
Strong near‐surface electromagnetic field formed by collective oscillation of electrons on Cu nanostructure a shows a strong dependence on geometry, offering a promising approach to boost the light absorption of ZnO photoactive layers with enhanced plasmon scattering. Here, a facile way to fabricate UV photodetectors with tunable configuration of the self‐assembled Cu nanostructures on ZnO thin films is reported. The incident lights are effectively confined in ZnO photoactive layers with the existence of the uplayer Cu nanostructures, and the interdiffusion of Cu atoms during fabrication of the Cu nanostructures can improve the carrier transfer in ZnO thin films. The optical properties of the hybrid architectures are successfully tailored over a control of the geometric evolution of the Cu nanostructures, resulting in significantly enhanced photocurrent and responsivity of 2.26 mA and 234 A W?1 under a UV light illumination of 0.62 mW cm?2 at 10 V, respectively. The photodetectors also exhibit excellent reproducibility, stability, and UV–visible rejection ratio (R370 nm/R500 nm) of ≈370, offering an approach of high‐performance UV photodetectors for practical applications.  相似文献   

9.
Implementation of artificial intelligent systems with light‐stimulated synaptic emulators may enhance computational speed by providing devices with high bandwidth, low power computation requirements, and low crosstalk. One of the key challenges is to develop light‐stimulated devices that can response to light signals in a neuron‐/synapse‐like fashion. A simple and effective solution process to fabricate light‐stimulated synaptic transistors (LSSTs) based on inorganic halide perovskite quantum dots (IHP QDs) and organic semiconductors (OSCs) is reported. Blending IHP QDs and OSCs not only improves the charge separation efficiency of the photoexcited charges, but also induces delayed decay of the photocurrent in the IHP QDs/OSCs hybrid film. The enhanced charge separation efficiency results in high photoresponsivity, while the induced delayed decay of the photocurrent is critical to achieving light‐stimulating devices with a memory effect, which are important for achieving high synaptic performance. The LSSTs can respond to light signals in a highly neuron‐/synapse‐like fashion. Both short‐term and long‐term synaptic behaviors have been realized, which may lay the foundation for the future implementation of artificial intelligent systems that are enabled by light signals. More significantly, LSSTs are fabricated by a facile solution process which can be easily applied to large‐scale samples.  相似文献   

10.
Self‐powered photodetectors (PDs) have long been realized by utilizing photovoltaic effect and their performances can be effectively enhanced by introducing the piezo‐phototronic effect. Recently, a novel pyro‐phototronic effect is invented as an alternative approach for performance enhancement of self‐powered PDs. Here, a self‐powered organic/inorganic PD is demonstrated and the influences of externally applied strain on the pyro‐phototronic and the photovoltaic effects are thoroughly investigated. Under 325 nm 2.30 mW cm‐2 UV illumination and at a ‐0.45% compressive strain, the PD's photocurrent is dramatically enhanced from ≈14.5 to ≈103 nA by combining the pyro‐phototronic and piezo‐phototronic effects together, showing a significant improvement of over 600%. Theoretical simulations have been carried out via the finite element method to propose the underlying working mechanism. Moreover, the pyro‐phototronic effect can be introduced by applying a ‐0.45% compressive strain to greatly enhance the PD's response to 442 nm illumination, including photocurrent, rise time, and fall time. This work provides in‐depth understandings about the pyro‐phototronic and the piezo‐phototronic effects on the performances of self‐powered PD to light sources with different wavelengths and indicates huge potential of these two effects in optoelectronic devices.  相似文献   

11.
The unique feature of nacre‐like 2D layered materials provides a facile, yet highly efficient way to modulate the transmembrane ion transport from two orthogonal transport directions, either vertical or horizontal. Recently, light‐driven active transport of ionic species in synthetic nanofluidic systems attracts broad research interest. Herein, taking advantage of the photoelectric semiconducting properties of 2D transition metal dichalcogenides, the generation of a directional and greatly enhanced cationic flow through WS2‐based 2D nanofluidic membranes upon asymmetric visible light illumination is reported. Compared with graphene‐based materials, the magnitude of the ionic photocurrent can be enhanced by tens of times, and its photo‐responsiveness can be 2–3.5 times faster. This enhancement is explained by the coexistence of semiconducting and metallic WS2 nanosheets in the hybrid membrane that facilitates the asymmetric diffusion of photoexcited charge carriers on the channel wall, and the high ionic conductance due to the neat membrane structure. To further demonstrate its application, photonic ion switches, photonic ion diodes, and photonic ion transistors as the fundamental elements for light‐controlled nanofluidic circuits are further developed. Exploring new possibilities in the family of liquid processable colloidal 2D materials provides a way toward high‐performance light‐harvesting nanofluidic systems for artificial photosynthesis and sunlight‐driven desalination.  相似文献   

12.
Constructing 3D nanophotonic structures is regarded as an effective means to realize both efficient light absorption and efficient charge separation. However, most of the 3D structures reported so far enhance light trapping beyond the absorption onset wavelength, and thus greatly attentuate or even completely block the long‐wavelength light, which could otherwise be efficiently absorbed by narrow‐bandgap materials in a Z‐scheme or tandem device. In addition, constructing a 3D conductive substrate often involves complex processes causing increased cost and upscaling problems. To overcome these shortcomings, a novel 3D hematite nanorod@nanobowl array nanophotonic structure is designed and fabricated by a low‐cost method. This unique structure can enhance light absorption with tunable cutoffs and rationally concentrate photons right above the bowl bottom, enabling efficient charge separation. By loading NiFeOx as a cocatalyst, a high photocurrent density of 3.41 ± 0.2 mA cm?2 at 1.23 V versus reversible hydrogen electrode (RHE) can be obtained, which is 2.35 times that with a planar structure in otherwise the same system.  相似文献   

13.
Biological electrogenic systems use protein‐based ionic pumps to move salt ions uphill across a cell membrane to accumulate an ion concentration gradient from the equilibrium physiological environment. Toward high‐performance and robust artificial electric organs, attaining an antigradient ion transport mode by fully abiotic materials remains a great challenge. Herein, a light‐driven proton pump transport phenomenon through a Janus graphene oxide membrane (JGOM) is reported. The JGOM is fabricated by sequential deposition of graphene oxide (GO) nanosheets modified with photobase (BOH) and photoacid (HA) molecules. Upon ultraviolet light illumination, the generation of a net protonic photocurrent through the JGOM, from the HA‐GO to the BOH‐GO side, is observed. The directional proton flow can thus establish a transmembrane proton concentration gradient of up to 0.8 pH units mm?2 membrane area at a proton transport rate of 3.0 mol h?1 m?2. Against a concentration gradient, antigradient proton transport can be achieved. The working principle is explained in terms of asymmetric surface charge polarization on HA‐GO and BOH‐GO multilayers triggered by photoisomerization reactions, and the consequent intramembrane proton concentration gradient. The implementation of membrane‐scale light‐harvesting 2D nanofluidic system that mimics the charge process of the bioelectric organs makes a straightforward step toward artificial electrogenic and photosynthetic applications.  相似文献   

14.
All‐inorganic perovskites have high carrier mobility, long carrier diffusion length, excellent visible light absorption, and well overlapping with localized surface plasmon resonance (LSPR) of noble metal nanocrystals (NCs). The high‐performance photodetectors can be constructed by means of the intrinsic outstanding photoelectric properties, especially plasma coupling. Here, for the first time, inorganic perovskite photodetectors are demonstrated with synergetic effect of preferred‐orientation film and plasmonic with both high performance and solution process virtues, evidenced by 238% plasmonic enhancement factor and 106 on/off ratio. The CsPbBr3 and Au NC inks are assembled into high‐quality films by centrifugal‐casting and spin‐coating, respectively, which lead to the low cost and solution‐processed photodetectors. The remarkable near‐field enhancement effect induced by the coupling between Au LSPR and CsPbBr3 photogenerated carriers is revealed by finite‐difference time‐domain simulations. The photodetector exhibits a light on/off ratio of more than 106 under 532 nm laser illumination of 4.65 mW cm?2. The photocurrent increases from 0.67 to 2.77 μA with centrifugal‐casting. Moreover, the photocurrent rises from 245.6 to 831.1 μA with Au NCs plasma enhancement, leading to an enhancement factor of 238%, which is the most optimal report among the LSPR‐enhanced photodetectors, to the best of our knowledge. The results of this study suggest that all‐inorganic perovskites are promising semiconductors for high‐performance solution‐processed photodetectors, which can be further enhanced by Au plasmonic effect, and hence have huge potentials in optical communication, safety monitoring, and biological sensing.  相似文献   

15.
A hexafluorophosphate ionic liquid is used as a functional monomer to prepare a metal–organic framework (Zn‐MOF). Zn‐MOF is used as a template for MoS2 nanosheets synthesis and further carbonized to yield light‐responsive ZnS/C/MoS2 nanocomposites. Zn‐MOF, carbonized‐Zn‐MOF, and ZnS/C/MoS2 nanocomposites are characterized by Fourier transform infrared spectroscopy, transmission electron microscopy, X‐ray diffraction pattern, scanning electron microscopy (SEM), element mapping, Raman spectroscopy, X‐ray photoelectron spectroscopy, fluorescence, and nitrogen‐adsorption analysis. Carcinoembryonic antigen (CEA) is selected as a model to construct an immunosensing platform to evaluate the photo‐electrochemical (PEC) performances of ZnS/C/MoS2 nanocomposites. A sandwich‐type PEC immunosensor is fabricated by immobilizing CEA antibody (Ab1) onto the ZnS/C/MoS2/GCE surface, subsequently binding CEA and the alkaline phosphatase‐gold nanoparticle labeled CEA antibody (ALP‐Au‐Ab2). The catalytic conversion of vitamin C magnesium phosphate produces ascorbic acid (AA). Upon being illuminated, AA can react with photogenerated holes from ZnS/C/MoS2 nanocomposites to generate a photocurrent for quantitative assay. Under optimized experimental conditions, the PEC immunosensor exhibits excellent analytical characteristics with a linear range from 2.0 pg mL?1 to 10.0 ng mL?1 and a detection limit of 1.30 pg mL?1 (S/N = 3). The outstanding practicability of this PEC immunosensor is demonstrated by accurate assaying of CEA in clinical serum samples.  相似文献   

16.
TiO2 is one of the most promising photoanodes for solar-hydrogen conversion by water splitting. However, the solar-hydrogen efficiency of TiO2 remains limited because of a low photocurrent generation. A clear understanding of photoexcitations within photoanodes can predict the quantity of photocurrent and consequently determine the solar-hydrogen efficiency. In this work, hydrothermally synthesized rutile TiO2 nanorods were investigated for their photoelectrochemical (PEC) performance. A photogenerated hole concentration of TiO2 photoanode was derived as 8.40 × 1014 cm−3 under one sun illumination. In addition, Fermi level pinning associated with high density of surface states was also observed under PEC operation. Base on these results, a series of band diagrams of TiO2 photoanode were established to describe the photogeneration of holes and current at various bias potential. The main limitation of photocurrent generation is the distribution of surface-trapped states, which determines the hole concentration at the surface and consequently determines the open-circuit potential and the photocurrent density.  相似文献   

17.
Conductive metal oxides represent a new category of functional material with vital importance for many modern applications. The present work introduces a new conductive metal oxide V13O16, which is synthesized via a simplified photoelectrochemical procedure and decorated onto the semiconducting photocatalyst BiVO4 in controlled mass percentages ranging from 25% to 37%. Owing to its excellent conductivity and good compatibility with oxide materials, the metallic V13O16‐decorated BiVO4 hybrid catalyst shows a high photocurrent density of 2.2 ± 0.2 mA cm?2 at 1.23 V versus reversible hydrogen electrode (RHE). Both experimental characterization and density functional theory calculations indicate that the superior photocurrent derives from enhanced charge separation and transfer, resulting from ohmic contact at the interface of mixed phases and superior electrical conductivity from V13O16. A Co–Pi coating on BiVO4–V13O16 further increases the photocurrent to 5.0 ± 0.5 mA cm?2 at 1.23 V versus RHE, which is among the highest reported for BiVO4‐based photoelectrodes. Surface photovoltage and transient photocurrent measurements suggest a charge‐transfer model in which photocurrents are enhanced by improved surface passivation, although the barrier at the Co–Pi/electrolyte interface limits the charge transfer.  相似文献   

18.
A new approach for artificial photocatalysis of electrical generation directly from atmospheric water is reported. A hybrid system comprising a hydrogel incorporated with Cu2O and BaTiO3 nanoparticles is developed, wherein the Cu2O is designed to expose two different crystal planes, namely (100) and (111). These planes exhibit different surface potentials and form a polarization electric field of 2.3 kV cm?1 that acts on a ferroelectric dipole. With the help of this electric field, the dipole is redirected for aiding in positive and negative polarizations with (100) and (111) planes, then boosting water reduction and oxidation kinetics separately at (100) and (111) planes. Additonally, zinc‐/cobalt‐based superhygroscopic hydrogels serve as a water‐capturing “hand” to harness humidity from the ambient environment. The integrated hydrogel–Cu2O@BaTiO3 hybrid is used to dehumidify air, which can split 36.5 mg of water by employing only 150 mg hydrogel and simultaneously generate a photocurrent of 224.3 µA cm?2 under 10 mW cm?2 illumination.  相似文献   

19.
2D materials hold great potential for designing novel electronic and optoelectronic devices. However, 2D material can only absorb limited incident light. As a representative 2D semiconductor, monolayer MoS2 can only absorb up to 10% of the incident light in the visible, which is not sufficient to achieve a high optical‐to‐electrical conversion efficiency. To overcome this shortcoming, a “gap‐mode” plasmon‐enhanced monolayer MoS2 fluorescent emitter and photodetector is designed by squeezing the light‐field into Ag shell‐isolated nanoparticles–Au film gap, where the confined electromagnetic field can interact with monolayer MoS2. With this gap‐mode plasmon‐enhanced configuration, a 110‐fold enhancement of photoluminescence intensity is achieved, exceeding values reached by other plasmon‐enhanced MoS2 fluorescent emitters. In addition, a gap‐mode plasmon‐enhanced monolayer MoS2 photodetector with an 880% enhancement in photocurrent and a responsivity of 287.5 A W?1 is demonstrated, exceeding previously reported plasmon‐enhanced monolayer MoS2 photodetectors.  相似文献   

20.
Inverse photoresponse is discovered from phototransistors based on molybdenum disulfide (MoS2). The devices are capable of detecting photons with energy below the bandgap of MoS2. Under the illumination of near‐infrared (NIR) light at 980 and 1550 nm, negative photoresponses with short response time (50 ms) are observed for the first time. Upon visible‐light illumination, the phototransistors exhibit positive photoresponse with ultrahigh responsivity on the order of 104–105 A W?1 owing to the photogating effect and charge trapping mechanism. Besides, the phototransistors can detect a weak visible‐light signal with effective optical power as low as 17 picowatts (pW). A thermally induced photoresponse mechanism, the bolometric effect, is proposed as the cause of the negative photocurrent in the NIR regime. The thermal energy of the NIR radiation is transferred to the MoS2 crystal lattice, inducing lattice heating and resistance increase. This model is experimentally confirmed by low‐temperature electrical measurements. The bolometric coefficient calculated from the measured transport current change with temperature is ?33 nA K?1. These findings offer a new approach to develop sub‐bandgap photodetectors and other novel optoelectronic devices based on 2D layered materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号