首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pure and cerium (Ce) doped tin oxide (SnO2) thin films are prepared on glass substrates by jet nebulizer spray pyrolysis technique at 450 °C. The synthesized films are characterized by X-ray diffraction (XRD), scanning electron microscopy, energy dispersive analysis X-ray, ultra violet visible spectrometer (UV–Vis) and stylus profilometer. Crystalline structure, crystallite size, lattice parameters, texture coefficient and stacking fault of the SnO2 thin films have been determined using X-ray diffractometer. The XRD results indicate that the films are grown with (110) plane preferred orientation. The surface morphology, elemental analysis and film thickness of the SnO2 films are analyzed and discussed. Optical band gap energy are calculated with transmittance data obtained from UV–Visible spectra. Optical characterization reveals that the band gap energy is found decreased from 3.49 to 2.68 eV. Pure and Ce doped SnO2 thin film gas sensors are fabricated and their gas sensing properties are tested for various gases maintained at different temperature between 150 and 250 °C. The 10 wt% Ce doped SnO2 sensor shows good selectivity towards ethanol (at operating temperature 250 °C). The influence of Ce concentration and operating temperature on the sensor performance is discussed. The better sensing ability for ethanol is observed compared with methanol, acetone, ammonia, and 2-methoxy ethanol gases.  相似文献   

2.
Pure and Cu-doped SnO2 nanofibers are synthesized via a simple electrospinning method, and characterized by transmission electron microscopy and X-ray diffraction. The sensor fabricated from Cu-doped SnO2 nanofibers exhibits improved sensing properties to ethanol at 300 °C. The sensitivity is up to 3 when this sensor is exposed to 5 ppm ethanol. The response and recovery times are about 1 and 10 s, respectively. The linear dependence of the sensitivity on the ethanol concentration is observed in the range of 5-500 ppm. Good selectivity is also observed in our studies. The results make Cu-doped SnO2 nanofibers good candidates for fabricating high performance ethanol sensors.  相似文献   

3.
In this paper we report doping induced enhanced sensor response of SnO2 based sensor towards ethanol at a working temperature of 200 °C. Undoped and dysprosium-doped (Dy-doped) SnO2 nanoparticles were characterized by X-ray diffraction (XRD), Raman spectroscopy, transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). XRD and Raman results verified tetragonal rutile structure of the prepared samples. It has been observed that crystallite size reduced with increase in dopant concentration. In addition, the particle size has been calculated from Raman spectroscopy using phonon confinement model and the values match very well with results obtained from TEM and X-ray diffraction investigations. Dy-doped SnO2 sensors exhibited significantly enhanced response towards ethanol as compared to undoped sensor. The optimum operating temperature of doped sensor reduced to 200 °C as compared to 320 °C for that of undoped sensor. Moreover, sensor fabricated from Dy-doped SnO2 nanostructures was highly selective toward ethanol which signifies its potential use for commercial applications. The gas sensing mechanism of SnO2 and possible origin of enhanced sensor response has been discussed.  相似文献   

4.
Fe-doped SnO2 nanofibers are synthesized through an electrospinning method and characterized by scanning electron microscopy and transmission electron microscopy. The sensor fabricated from these nanofibers exhibits high sensitivity and rapid response/recovery to ethanol at 300 °C. The sensitivity is up to 15.3 when the sensor is exposed to 100 ppm ethanol, and the response and recovery time is about 1 and 3 s, respectively. The linear dependence of the sensitivity on the ethanol concentration is observed in the range of 10-300 ppm. These results demonstrate that Fe-doped SnO2 nanofibers can be used as the sensing material for fabricating high performance ethanol sensors.  相似文献   

5.
A chemical route has been used to synthesize composite oxides of zinc and tin. An ammonia solution was added to equal amounts of zinc and tin chloride solutions of same molarities to obtain precipitates. Three portions of these precipitates were annealed at 400, 600 and 800 °C, respectively. Results of X-ray diffraction and transmission electron microscopy clearly depicted coexistence of phases of nano-sized SnO2, ZnO, Zn2SnO4 and ZnSnO3. The effect of annealing on structure, morphology and sensing has been observed as well. It has been observed that annealing promoted growth of Zn2SnO4 and ZnSnO3 at the expense of zinc. The sensing response of fabricated sensors from these materials to 250 ppm LPG and ethanol has been investigated. The sensor fabricated from powder annealed at 400 °C responded better to LPG than ethanol.  相似文献   

6.
The humidity dependence of the gas sensing characteristics of metal oxide semiconductors has been one of the greatest obstacles for gas sensor applications during the last five decades because ambient humidity dynamically changes with the environmental conditions. Herein, a new and novel strategy is reported to eliminate the humidity dependence of the gas sensing characteristics of oxide chemiresistors via dynamic self‐refreshing of the sensing surface affected by water vapor chemisorption. The sensor resistance and gas response of pure In2O3 hollow spheres significantly change and deteriorate in humid atmospheres. In contrast, the humidity dependence becomes negligible when an optimal concentration of CeO2 nanoclusters is uniformly loaded onto In2O3 hollow spheres via layer‐by‐layer (LBL) assembly. Moreover, In2O3 sensors LBL‐coated with CeO2 nanoclusters show fast response/recovery, low detection limit (500 ppb), and high selectivity to acetone even in highly humid conditions (relative humidity 80%). The mechanism underlying the dynamic refreshing of the In2O3 sensing surfaces regardless of humidity variation is investigated in relation to the role of CeO2 and the chemical interaction among CeO2, In2O3, and water vapor. This strategy can be widely used to design high performance gas sensors including disease diagnosis via breath analysis and pollutant monitoring.  相似文献   

7.
In the present work, solid-state reaction and sol–gel route derived pure tin oxide (SnO2) powders have been used to develop the palladium (Pd)-doped SnO2 thick film sensors for detection of liquefied petroleum gas (LPG). Efforts have been made to study the gas sensing characteristics i.e., sensor response, response/recovery time and repeatability of the thick film sensors. The response of the sensors has been investigated at different operating temperatures from 200 to 350 °C in order to optimise the operating temperature which yields the maximum response upon exposure to fixed concentration of LPG. The optimum temperature is kept constant to facilitate the gas sensing characteristics as a function of the various concentration (0.25–5 vol%) of LPG. The structural and microstructural properties of Pd-doped SnO2 powder and developed sensors have been studied by performing X-ray diffraction and field emission electron microscopy measurements. The improvement in the response along with better response and recovery time have been correlated to the reduction in crystallite size of SnO2 powder and morphology of printed sensor in thick film form. It is found that the thick film sensor developed by using sol–gel route derived SnO2 powder with an optimum doping of 1 wt% Pd is extremely sensitive (86 %) to LPG at 350 °C.  相似文献   

8.
The paper investigates the gas response of nanocrystalline SnO2 based thick film sensors upon exposure to carbon monoxide (CO) in changing water vapour (H2O) and oxygen (O2) backgrounds. The sensing materials were undoped, Pt- and Pd-doped SnO2. We found that in the absence of oxygen, the sensor signal (defined as the ratio between the resistance in the background gas, R0 and the resistance in the presence of the target gases, R, namely R0/R) have the highest values. These values are higher for doped materials than for the undoped ones. The presence of humidity increases dramatically the sensor signal of the doped materials. In the presence of oxygen, the sensor signal decreases significantly for all sensor materials. The results indicate that there is a competitive adsorption between O2 and H2O related surface species and, as a result, different sensing mechanisms can be observed for CO.  相似文献   

9.
Single crystal nanostructures of semiconducting tin oxides have been fabricated and characterized as sensing materials for implementation in an electronic nose. The nanowires exhibit exceptional crystalline quality and a very high length-to-width ratio, resulting in enhanced sensing capability as well as long-term material stability for prolonged operation. A sensing device based on SnO2 nanowires has been fabricated and comparatively tested in an array of chemical sensor with conventional thin film sensing device. Preliminary measurements ethanol/water mixtures demonstrate that nanowire-based sensors can be favourably implemented in the electronic nose and that they perform comparably with the conventional thin film layers.  相似文献   

10.
The humidity sensitivity of a single β‐Ga2O3/amorphous SnO2 core/shell microribbon on a flexible substrate is enhanced by the application of tensile strain and increases linearly with the strain. The strain‐induced enhancement originates from the increase in the effective surface area where water molecules are adsorbed. This strain dependence of humidity sensitivity can be used to monitor the external strain. The strain sensing of the microribbon device under various amounts of mechanical loading shows excellent reliability and reproducibility with a gauge factor of ?41. The flexible device has high potential to detect both humidity and strain at room temperature. These findings and the mechanism involved are expected to pave the way for new flexible strain and multifunctional sensors.  相似文献   

11.
Diffuse reflectance infrared Fourier transform measurements were performed on tin oxide based thick film gas sensors operated in normal working conditions. We characterised SnO2 sensors at different temperatures between room temperature and 300 °C. The results show the presence of different surface OH groups as well as coordinated water on the SnO2 sensor surface. Their intensity changes with temperature. During the temperature cycles the bands’ peak positions are reversibly changed but their intensity is not. CO measurements were performed at 300 °C at different humidity levels (0 and 50% r.h.) on un-doped and Pd-doped sensors. In the presence of CO we observed in the spectra: a decrease of the OH groups on the SnO2 surfaces, the appearance of gaseous CO2 and CO in the pores of the sensitive layer and an increase of hydrated protons and of the free charge concentration. The effects are dramatically influenced by the water vapour concentration, temperature, dopands (Pd) and can be correlated with simultaneously performed sensor resistance measurements.  相似文献   

12.
The development of high performance gas sensors that operate at room temperature has attracted considerable attention. Unfortunately, the conventional mechanism of chemiresistive sensors is restricted at room temperature by insufficient reaction energy with target molecules. Herein, novel strategy for room temperature gas sensors is reported using an ionic‐activated sensing mechanism. The investigation reveals that a hydroxide layer is developed by the applied voltages on the SnO2 surface in the presence of humidity, leading to increased electrical conductivity. Surprisingly, the experimental results indicate ideal sensing behavior at room temperature for NO2 detection with sub‐parts‐per‐trillion (132.3 ppt) detection and fast recovery (25.7 s) to 5 ppm NO2 under humid conditions. The ionic‐activated sensing mechanism is proposed as a cascade process involving the formation of ionic conduction, reaction with a target gas, and demonstrates the novelty of the approach. It is believed that the results presented will open new pathways as a promising method for room temperature gas sensors.  相似文献   

13.
For the first time nitrogen or boron doped carbon nanotubes were added into a SnO2 matrix to develop a new hybrid CNTs/SnO2 gas sensors. The hybrid sensor is utilised to detect low ppb concentrations of NO2 in air, by measuring resistance changes of thin CNTs/SnO2 films. The tests are performed at room temperature. For comparison, pure SnO2 and N or B-substituted CNT sensors are also examined. Comparative gas sensing results reveal that the CNTs/SnO2 hybrid sensors exhibit much higher response towards NO2, at least by a factor of 10, and good baseline recovery properties at room temperature than the blank SnO2 and the N or B-substituted CNT sensors. This finding shows that doping SnO2 with low quantity of CNTs doped with heteroatoms can dramatically improve sensitivity.  相似文献   

14.
Rational design of nanostructures and efficient catalyst functionalization methods are critical to the realization of highly sensitive gas sensors. In order to solve these issues, two types of strategies are reported, i.e., (i) synthesis of peapod‐like hollow SnO2 nanostructures (hollow 0D‐1D SnO2) by using fluid dynamics of liquid Sn metal and (ii) metal–protein chelate driven uniform catalyst functionalization. The hollow 0D‐1D SnO2 nanostructures have advantages in enhanced gas accessibility and higher surface areas. In addition to structural benefits, protein encapsulated catalytic nanoparticles result in the uniform catalyst functionalization on both hollow SnO2 spheres and SnO2 nanotubes due to their dynamic migration properties. The migration of catalysts with liquid Sn metal is induced by selective location of catalysts around Sn. On the basis of these structural and uniform functionalization of catalyst benefits, biomarker chemical sensors are developed, which deliver highly selective detection capability toward acetone and toluene, respectively. Pt or Pd loaded multidimensional SnO2 nanostructures exhibit outstanding acetone (R air/R gas = 93.55 @ 350 °C, 5 ppm) and toluene (R air/R gas = 9.25 @ 350 °C, 5 ppm) sensing properties, respectively. These results demonstrate that unique nanostructuring and novel catalyst loading method enable sensors to selectively detect biomarkers for exhaled breath sensors.  相似文献   

15.
The influence of Cu doping on electrophysical, structural and gas sensing properties of the SnO2 films deposited by spray pyrolysis was considered in this paper. It was shown that the addition of Cu in SnO2 even in small concentrations was accompanied by strong changes in the SnO2-based gas sensors performances. The reasons of observed changes were discussed. The conclusion was made that the decrease of response of heavy doped SnO2:Cu-based gas sensors was mainly connected with both structural disordering of heavy doped SnO2:Cu metal oxide, and the appearance of the fine dispersed phase formed in the SnO2 matrix.  相似文献   

16.
The unique properties of MoS2 nanosheets make them a promising candidate for high‐performance room temperature sensing. However, the properties of pristine MoS2 nanosheets are strongly influenced by the significant adsorption of oxygen in an air environment, which leads to instability of the MoS2 sensing device, and all sensing results on MoS2 reported to date were exclusively obtained in an inert atmosphere. This significantly limits the practical sensor application of MoS2 in an air environment. Herein, a novel nanohybrid of SnO2 nanocrystal (NC)‐decorated crumpled MoS2 nanosheet (MoS2/SnO2) and its exciting air‐stable property for room temperature sensing of NO2 are reported. Interestingly, the SnO2 NCs serve as strong p‐type dopants for MoS2, leading to p‐type channels in the MoS2 nanosheets. The SnO2 NCs also significantly enhance the stability of MoS2 nanosheets in dry air. As a result, unlike other MoS2 sensors operated in an inert gas (e.g. N2), the nanohybrids exhibit high sensitivity, excellent selectivity, and repeatability to NO2 under a practical dry air environment. This work suggests that NC decoration significantly tunes the properties of MoS2 nanosheets for various applications.  相似文献   

17.
Self-assembled superstructure of SnO2/ZnO composite was synthesized by using alcohol-assisted hydrothermal method gas sensing properties of the material were investigated by using a static test system. The structure and morphology of the products were characterized by X-ray diffraction (XRD) and field-emission scanning electron microscope (FE-SEM). The diameter of the SnO2 nanorods was about 40 nm with a length of about 300 nm, SnO2 nanorods and ZnO nanosheets interconnect each other to form a superstructure. The gas sensing properties of superstructure SnO2/ZnO composite with different content of ZnO were investigated. Furthermore, the superstructure SnO2/ZnO composite sensor is characterized at different operating temperatures and its long-term stability in response to ethanol vapor is tested over a period of 3 months.  相似文献   

18.
The sensing response of pure and SnO2 activated Cr2O3 to ethanol vapours and liquefied petroleum gas (LPG) has been investigated. Fine particles of commercial chromium oxide powder were selected and deposited as thick film to act as a gas sensor. The sensor surface has been activated by tin dioxide, on surface oxidation of tin chloride. The concentration of tin chloride solution, used as activator, was varied from 0 to 5% and its effect on gas response, selectivity and operating temperature has been studied. It was found that response to ethanol vapours significantly improved, whereas response to LPG remained unaffected. Moreover, operating temperature remains unchanged both for LPG and ethanol vapours.  相似文献   

19.
The measurements of the response—in terms of the conductance changes—to oxygen adsorption of tin dioxide (SnO2) thin-film-based gas sensors were performed. The sensing SnO2 layers were obtained by means of the rheotaxial growth and thermal oxidation (RGTO) method. The sensor responses were measured under a dry gas flow containing oxygen in nitrogen, within the range of temperature from 25 to 540 °C. For comparison, similar studies were performed for a commercial SnO2 thick-film (TGS 812) gas sensor.The in-depth profiles of the chemical composition of the RGTO SnO2 layers were determined from the scanning Auger microprobe experiment. The changes in concentration ratios [O]/[Sn] and [C]/[Sn] from the near-surface region towards the grain bulk were shown.  相似文献   

20.
Herein we report the preparation of SnO2 nanomatierials by chemical precipitation, sol-gel and dissolution-pyrolysis. Furthermore, we studied their sensing properties. The composition, crystal structure and ceramic microstructure of the powders obtained are characterized by X-ray diffractometer (XRD) and scanning electron microscopy (SEM). The results show SnO2 fabricated through the three methods has rutile structure and the sizes of spherical particles are below 30 nm. From the result, we can also know that the thick films deposited onto alumina substrates show different morphology, and which are fabricated by dissolution-pyrolysis has fibrous structure. We investigate the sensitivities, response and recovery times of the three sensors. The results of gas sensing measurement show that SnO2-based sensor prepared by dissolution-pyrolysis method has high sensitivity, quick response and recovery behavior to the gases we studied. It also has wider range of working temperature that is from 25 to 400 °C compared with SnO2-based sensor fabricated by the other two methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号