首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, hydroxyl‐functionalized Mo2C‐based MXene nanosheets are synthesized by facilely removing the Sn layer of Mo2SnC. The hydroxyl‐functionalized surface of Mo2C suppresses the shuttle effect of lithium polysulfides (LiPSs) through strong interaction between Mo atoms on the MXenes surface and LiPSs. Carbon nanotubes (CNTs) are further introduced into Mo2C phase to enlarge the specific surface area of the composite, improve its electronic conductivity, and alleviate the volume change during discharging/charging. The strong surface‐bound sulfur in the hierarchical Mo2C‐CNTs host can lead to a superior electrochemical performance in lithium–sulfur batteries. A large reversible capacity of ≈925 mAh g ? 1 is observed after 250 cycles at a current density of 0.1 C (1 C = 1675 mAh g?1) with good rate capability. Notably, the electrodes with high loading amounts of sulfur can also deliver good electrochemical performances, i.e., initial reversible capacities of ≈1314 mAh g?1 (2.4 mAh cm?2), ≈1068 mAh g?1 (3.7 mAh cm?2), and ≈959 mAh g?1 (5.3 mAh cm?2) at various areal loading amounts of sulfur (1.8, 3.5, and 5.6 mg cm?2) are also observed, respectively.  相似文献   

2.
Flexible power sources have shown great promise in next‐generation bendable, implantable, and wearable electronic systems. Here, flexible and binder‐free electrodes of Na3V2(PO4)3/reduced graphene oxide (NVP/rGO) and Sb/rGO nanocomposites for sodium‐ion batteries are reported. The Sb/rGO and NVP/rGO paper electrodes with high flexibility and tailorability can be easily fabricated. Sb and NVP nanoparticles are embedded homogenously in the interconnected framework of rGO nanosheets, which provides structurally stable hosts for Na‐ion intercalation and deintercalation. The NVP/rGO paper‐like cathode delivers a reversible capacity of 113 mAh g?1 at 100 mA g?1 and high capacity retention of ≈96.6% after 120 cycles. The Sb/rGO paper‐like anode gives a highly reversible capacity of 612 mAh g?1 at 100 mA g?1, an excellent rate capacity up to 30 C, and a good cycle performance. Moreover, the sodium‐ion full cell of NVP/rGO//Sb/rGO has been fabricated, delivering a highly reversible capacity of ≈400 mAh g?1 at a current density of 100 mA g?1 after 100 charge/discharge cycles. This work may provide promising electrode candidates for developing next‐generation energy‐storage devices with high capacity and long cycle life.  相似文献   

3.
SnO2‐based lithium‐ion batteries have low cost and high energy density, but their capacity fades rapidly during lithiation/delithiation due to phase aggregation and cracking. These problems can be mitigated by using highly conducting black SnO2?x , which homogenizes the redox reactions and stabilizes fine, fracture‐resistant Sn precipitates in the Li2O matrix. Such fine Sn precipitates and their ample contact with Li2O proliferate the reversible Sn → Li x Sn → Sn → SnO2/SnO2?x cycle during charging/discharging. SnO2?x electrode has a reversible capacity of 1340 mAh g?1 and retains 590 mAh g?1 after 100 cycles. The addition of highly conductive, well‐dispersed reduced graphene oxide further stabilizes and improves its performance, allowing 950 mAh g?1 remaining after 100 cycles at 0.2 A g?1 with 700 mAh g?1 at 2.0 A g?1. Conductivity‐directed microstructure development may offer a new approach to form advanced electrodes.  相似文献   

4.
Tin (Sn) is considered to be an ideal candidate for the anode of sodium ion batteries. However, the design of Sn‐based electrodes with maintained long‐term stability still remains challenging due to their huge volume expansion (≈420%) and easy pulverization during cycling. Herein, a facile and versatile strategy for the synthesis of nitrogen‐doped graphene quantum dot (GQD) edge‐anchored Sn nanodots as the pillars into reduced graphene oxide blocks (NGQD/Sn‐NG) for ultrafast and ultrastable sodium‐ion storage is reported. Sn nanodots (2–5 nm) anchored at the edges of “octopus‐like” GQDs via covalent Sn? O? C/Sn? N? C bonds function as the pillars that ensure fast Na‐ion/electron transport across the graphene blocks. Moreover, the chemical and spatial (layered structure) confinements not only suppress Sn aggregation, but also function as physical barriers for buffering volume change upon sodiation/desodiation. Consequently, the NGQD/Sn‐NG with high structural stability exhibits excellent rate performance (555 mAh g?1 at 0.1 A g?1 and 198 mAh g?1 at 10 A g?1) and ultra‐long cycling stability (184 mAh g?1 remaining even after 2000 cycles at 5 A g?1). The confinement‐induced synthesis together with remarkable electrochemical performances should shed light on the practical application of highly attractive tin‐based anodes for next generation rechargeable sodium batteries.  相似文献   

5.
Lithium ion capacitors are new energy storage devices combining the complementary features of both electric double‐layer capacitors and lithium ion batteries. A key limitation to this technology is the kinetic imbalance between the Faradaic insertion electrode and capacitive electrode. Here, we demonstrate that the Li3VO4 with low Li‐ion insertion voltage and fast kinetics can be favorably used for lithium ion capacitors. N‐doped carbon‐encapsulated Li3VO4 nanowires are synthesized through a morphology‐inheritance route, displaying a low insertion voltage between 0.2 and 1.0 V, a high reversible capacity of ≈400 mAh g?1 at 0.1 A g?1, excellent rate capability, and long‐term cycling stability. Benefiting from the small nanoparticles, low energy diffusion barrier and highly localized charge‐transfer, the Li3VO4/N‐doped carbon nanowires exhibit a high‐rate pseudocapacitive behavior. A lithium ion capacitor device based on these Li3VO4/N‐doped carbon nanowires delivers a high energy density of 136.4 Wh kg?1 at a power density of 532 W kg?1, revealing the potential for application in high‐performance and long life energy storage devices.  相似文献   

6.
A high capacity cathode is the key to the realization of high‐energy‐density lithium‐ion batteries. The anionic oxygen redox induced by activation of the Li2MnO3 domain has previously afforded an O3‐type layered Li‐rich material used as the cathode for lithium‐ion batteries with a notably high capacity of 250–300 mAh g?1. However, its practical application in lithium‐ion batteries has been limited due to electrodes made from this material suffering severe voltage fading and capacity decay during cycling. Here, it is shown that an O2‐type Li‐rich material with a single‐layer Li2MnO3 superstructure can deliver an extraordinary reversible capacity of 400 mAh g?1 (energy density: ≈1360 Wh kg?1). The activation of a single‐layer Li2MnO3 enables stable anionic oxygen redox reactions and leads to a highly reversible charge–discharge cycle. Understanding the high performance will further the development of high‐capacity cathode materials that utilize anionic oxygen redox processes.  相似文献   

7.
γ‐Graphyne is a new nanostructured carbon material with large theoretical Li+ storage due to its unique large conjugate rings, which makes it a potential anode for high‐capacity lithium‐ion batteries (LIBs). In this work, γ‐graphyne‐based high‐capacity LIBs are demonstrated experimentally. γ‐Graphyne is synthesized through mechanochemical and calcination processes by using CaC2 and C6Br6. Brunauer–Emmett–Teller, atomic force microscopy, X‐ray photoelectron spectroscopy, solid‐state 13C NMR and Raman spectra are conducted to confirm its morphology and chemical structure. The sample presents 2D mesoporous structure and is exactly composed of sp and sp2‐hybridized carbon atoms as the γ‐graphyne structure. The electrode shows high Li+ storage (1104.5 mAh g?1 at 100 mA g?1) and rate capability (435.1 mAh g?1 at 5 A g?1). The capacity retention can be up to 948.6 (200 mA g?1 for 350 cycles) and 730.4 mAh g?1 (1 A g?1 for 600 cycles), respectively. These excellent electrochemical performances are ascribed to the mesoporous architecture, large conjugate rings, enlarged interplanar distance, and high structural integrity for fast Li+ diffusion and improved cycling stability in γ‐graphyne. This work provides an environmentally benign and cost‐effective mechanochemical method to synthesize γ‐graphyne and demonstrates its superior Li+ storage experimentally.  相似文献   

8.
In this work, a facile strategy for the construction of single crystalline Ni3S2 nanowires coated with N‐doped carbon shell (NC) forming Ni3S2@NC core/shell arrays by one‐step chemical vapor deposition process is reported. In addition to the good electronic conductivity from the NC shell, the nanowire structure also ensures the accommodation of large volume expansion during cycling, leading to pre‐eminent high‐rate capacities (470 mAh g?1 at 0.05 A g?1 and 385 mAh g?1 at 2 A g?1) and outstanding cycling stability with a capacity retention of 91% after 100 cycles at 1 A g?1. Furthermore, ex situ transmission electron microscopy combined with X‐ray diffraction and Raman spectra are used to investigate the reaction mechanism of Ni3S2@NC during the charge/discharge process. The product after delithiation consists of Ni3S2 and sulfur, suggesting that the capacity of the electrode comes from the conversion reaction of both Ni3S2 and sulfur with Li2S.  相似文献   

9.
The combination of high‐capacity and long‐term cycling stability is an important factor for practical application of anode materials for lithium‐ion batteries. Herein, NixMnyCozO nanowire (x + y + z = 1)/carbon nanotube (CNT) composite microspheres with a 3D interconnected conductive network structure (3DICN‐NCS) are prepared via a spray‐drying method. The 3D interconnected conductive network structure can facilitate the penetration of electrolyte into the microspheres and provide excellent connectivity for rapid Li+ ion/electron transfer in the microspheres, thus greatly reducing the concentration polarization in the electrode. Additionally, the empty spaces among the nanowires in the network accommodate microsphere volume expansion associated with Li+ intercalation during the cycling process, which improves the cycling stability of the electrode. The CNTs distribute uniformly in the microspheres, which act as conductive frameworks to greatly improve the electrical conductivity of the microspheres. As expected, the prepared 3DICN‐NCS demonstrates excellent electrochemical performance, showing a high capacity of 1277 mAh g?1 at 1 A g?1 after 2000 cycles and 790 mAh g?1 at 5 A g?1 after 1000 cycles. This work demonstrates a universal method to construct a 3D interconnected conductive network structure for anode materials  相似文献   

10.
Silicon anode with extremely high theoretical specific capacity (≈4200 mAh g?1), experiences huge volume changes during Li‐ion insertion and extraction, causing mechanical fracture of Si particles and the growth of a solid–electrolyte interface (SEI), which results in a rapid capacity fading of Si electrodes. Herein, a mechanically reinforced localized structure is designed for carbon‐coated Si nanoparticles (C@Si) via elongated TiO2 nanotubes networks toward stabilizing Si electrode via alleviating mechanical strain and stabilizing the SEI layer. Benefited from the rational localized structure design, the carbon‐coated Si nanoparticles/TiO2 nanotubes composited electrode (C@Si/TiNT) exhibits an ideal electrode thickness swelling, which is lower than 1% after the first cycle and increases to about 6.6% even after 1600 cycles. While for traditional C@Si/carbon nanotube composited electrode, the initial swelling ratio is about 16.7% and reaches ≈190% after 1600 cycles. As a result, the C@Si/TiNT electrode exhibits an outstanding capacity of 1510 mAh g?1 at 0.1 A g?1 with high rate capability and long‐time cycling performance with 95% capacity retention after 1600 cycles. The rational design on mechanically reinforced localized structure for silicon electrode will provide a versatile platform to solve the current bottlenecks for other alloyed‐type electrode materials with large volume expansion toward practical applications.  相似文献   

11.
The CuS(x wt%)@Cu‐BTC (BTC = 1,3,5‐benzenetricarboxylate; x = 3, 10, 33, 58, 70, 99.9) materials are synthesized by a facile sulfidation reaction. The composites are composed of octahedral Cu3(BTC)2·(H2O)3 (Cu‐BTC) with a large specific surface area and CuS with a high conductivity. The as‐prepared CuS@Cu‐BTC products are first applied as the anodes of lithium‐ion batteries (LIBs). The synergistic effect between Cu‐BTC and CuS components can not only accommodate the volume change and stress relaxation of electrodes but also facilitate the fast transport of Li ions. Thus, it can greatly suppress the transformation process from Li2S to polysulfides by improving the reversibility of the conversion reaction. Benefiting from the unique structural features, the optimal CuS(70 wt%)@Cu‐BTC sample exhibits a remarkably improved electrochemical performance, showing an over‐theoretical capacity up to 1609 mAh g?1 after 200 cycles (100 mA g?1) with an excellent rate‐capability of ≈490 mAh g?1 at 1000 mA g?1. The outstanding LIB properties indicate that the CuS(70 wt%)@Cu‐BTC sample is a highly desirable electrode material candidate for high‐performance LIBs.  相似文献   

12.
Nanohybrid anode materials for Na‐ion batteries (NIBs) based on conversion and/or alloying reactions can provide significantly improved energy and power characteristics, while suffering from low Coulombic efficiency and unfavorable voltage properties. An NIB paper‐type nanohybrid anode (PNA) based on tin sulfide nanoparticles and acid‐treated multiwalled carbon nanotubes is reported. In 1 m NaPF6 dissolved in diethylene glycol dimethyl ether as an electrolyte, the above PNA shows a high reversible capacity of ≈1200 mAh g?1 and a large voltage plateau corresponding to a capacity of ≈550 mAh g?1 in the low‐voltage region of ≈0.1 V versus Na+/Na, exhibiting high rate capabilities at a current rate of 1 A g?1 and good cycling performance over 250 cycles. In addition, the PNA exhibits a high first Coulombic efficiency of ≈90%, achieving values above 99% during subsequent cycles. Furthermore, the feasibility of PNA usage is demonstrated by full‐cell tests with a reported cathode, which results in high specific energy and power values of ≈256 Wh kg?1 and 471 W kg?1, respectively, with stable cycling.  相似文献   

13.
To improve the performance of energy storage systems, the rational design of new electrode configurations is a strategic initiative. Here, we present a novel monodisperse fluffy alluaudite Na0.67FePO4, prepared by a modified solvothermal method, as promising electrode for sodium ion battery. This porous Na0.67FePO4 with nanocactus‐like morphology is composed by nanorods within an open three‐dimensional structure. This unique nanocactus‐based morphology offers three important advantages when used as electrode for sodium ion battery: (i) provides an open frame structure for a large Na+ ions transport; (ii) reduces the sodium ion and electron transport path by ≈20 nm; (iii) offers a large surface area for a more efficient interface between the electrode and the electrolyte. The electrochemical investigation revealed that this fluffy Na0.67FePO4 nanocactus exhibits the high discharge capacity of 138 mAh g?1. Moreover, a battery with a Na0.67FePO4/CNT hybrid electrode delivered a discharge capacity as high as ≈143 mAh g?1, coupled to an excellent stable cyclability (no obvious capacity fading over 50 cycles at a current rate of 5 mA g?1). This enhanced mechanism was studied by means of absorption measurements and ex situ XAFS characterizations. Results of the characterization of the Na0.67FePO4 suggests that the outstanding performance can be associated with the unique fluffy nanocactus morphology.  相似文献   

14.
Molybdenum ditelluride nanosheets encapsulated in few‐layer graphene (MoTe2/FLG) are synthesized by a simple heating method using Te and Mo powder and subsequent ball milling with graphite. The as‐prepared MoTe2/FLG nanocomposites as anode materials for lithium‐ion batteries exhibit excellent electrochemical performance with a highly reversible capacity of 596.5 mAh g?1 at 100 mA g?1, a high rate capability (334.5 mAh g?1 at 2 A g?1), and superior cycling stability (capacity retention of 99.5% over 400 cycles at 0.5 A g?1). Ex situ X‐ray diffraction and transmission electron microscopy are used to explore the lithium storage mechanism of MoTe2. Moreover, the electrochemical performance of a MoTe2/FLG//0.35Li2MnO3·0.65LiMn0.5Ni0.5O2 full cell is investigated, which displays a reversible capacity of 499 mAh g?1 (based on the MoTe2/FLG mass) at 100 mA g?1 and a capacity retention of 78% over 50 cycles, suggesting the promising application of MoTe2/FLG for lithium‐ion storage. First‐principles calculations exhibit that the lowest diffusion barrier (0.18 eV) for lithium ions along pathway III in the MoTe2 layered structure is beneficial for improving the Li intercalation/deintercalation property.  相似文献   

15.
Sodium‐ion batteries (SIBs) are considered a prospective candidate for large‐scale energy storage due to the merits of abundant sodium resources and low cost. However, a lack of suitable advanced anode materials has hindered further applications. Herein, metal–semiconductor mixed phase twinned hierarchical (MPTH) MoS2 nanowires with an expanded interlayer (9.63 Å) are engineered and prepared using MoO3 nanobelts as a self‐sacrificed template in the presence of a trace amount of (NH4)6Mo7O24·4H2O as initiator. The greatly expanded interlayer spacing accelerates Na+ insertion/extraction kinetics, and the metal–semiconductor mixed phase enhances electron transfer ability and stabilizes electrode structure during cycling. Benefiting from the structural merits, the MPTH MoS2 electrode delivers high reversible capacities of 200 mAh g?1 at 0.1 A g?1 for 200 cycles and 154 mAh g?1 at 1 A g?1 for 2450 cycles in the voltage range of 0.4–3.0 V. Strikingly, the electrode maintains 6500 cycles at a current density of 2 A g?1, corresponding to a capacity retention of 82.8% of the 2nd cycle, overwhelming the all reported MoS2 cycling results. This study provides an alternative strategy to boost SIB cycling performance in terms of reversible capacity by virtue of interlayer expansion and structure stability.  相似文献   

16.
Potassium‐ion batteries (KIBs) are promising alternatives to lithium‐ion batteries because of the abundance and low cost of K. However, an important challenge faced by KIBs is the search for high‐capacity materials that can hold large‐diameter K ions. Herein, copper oxide (CuO) nanoplates are synthesized as high‐performance anode materials for KIBs. CuO nanoplates with a thickness of ≈20 nm afford a large electrode–electrolyte contact interface and short K+ ion diffusion distance. As a consequence, a reversible capacity of 342.5 mAh g?1 is delivered by the as‐prepared CuO nanoplate electrode at 0.2 A g?1. Even after 100 cycles at a high current density of 1.0 A g?1, the capacity of the electrode remains over 206 mAh g?1, which is among the best values for KIB anodes reported in the literature. Moreover, a conversion reaction occurs at the CuO anode. Cu nanoparticles form during the first potassiation process and reoxidize to Cu2O during the depotassiation process. Thereafter, the conversion reaction proceeds between the as‐formed Cu2O and Cu, yielding a reversible theoretical capacity of 374 mAh g?1. Considering their low cost, easy preparation, and environmental benignity, CuO nanoplates are promising KIB anode materials.  相似文献   

17.
Currently, the specific capacity and cycling performance of various MoS2/carbon‐based anode materials for Na‐ion storage are far from satisfactory due to the insufficient structural stability of the electrode, incomplete protection of MoS2 by carbon, difficult access of electrolyte to the electrode interior, as well as inactivity of the adopted carbon matrix. To address these issues, this work presents the rational design and synthesis of 3D interconnected and hollow nanocables composed of multiwalled carbon@MoS2@carbon. In this architecture, (i) the 3D nanoweb‐like structure brings about excellent mechanical property of the electrode, (ii) the ultrathin MoS2 nanosheets are sandwiched between and doubly protected by two layers of porous carbon, (iii) the hollow structure of the primary nanofibers facilitates the access of electrolyte to the electrode interior, (iv) the porous and nitrogen‐doping properties of the two carbon materials lead to synergistic Na‐storage of carbon and MoS2. As a result, this hybrid material as the anode material of Na‐ion battery exhibits fast charge‐transfer reaction, high utilization efficiency, and ultrastability. Outstanding reversible capacity (1045 mAh g?1), excellent rate behavior (817 mAh g?1 at 7000 mA g?1), and good cycling performance (747 mAh g?1 after 200 cycles at 700 mA g?1) are obtained.  相似文献   

18.
Recently, binary ZnCo2O4 has drawn enormous attention for lithium‐ion batteries (LIBs) as attractive anode owing to its large theoretical capacity and good environmental benignity. However, the modest electrical conductivity and serious volumetric effect/particle agglomeration over cycling hinder its extensive applications. To address the concerns, herein, a rapid laser‐irradiation methodology is firstly devised toward efficient synthesis of oxygen‐vacancy abundant nano‐ZnCo2O4/porous reduced graphene oxide (rGO) hybrids as anodes for LIBs. The synergistic contributions from nano‐dimensional ZnCo2O4 with rich oxygen vacancies and flexible rGO guarantee abundant active sites, fast electron/ion transport, and robust structural stability, and inhibit the agglomeration of nanoscale ZnCo2O4, favoring for superb electrochemical lithium‐storage performance. More encouragingly, the optimal L‐ZCO@rGO‐30 anode exhibits a large reversible capacity of ≈1053 mAh g?1 at 0.05 A g?1, excellent cycling stability (≈746 mAh g?1 at 1.0 A g?1 after 250 cycles), and preeminent rate capability (≈686 mAh g?1 at 3.2 A g?1). Further kinetic analysis corroborates that the capacitive‐controlled process dominates the involved electrochemical reactions of hybrid anodes. More significantly, this rational design holds the promise of being extended for smart fabrication of other oxygen‐vacancy abundant metal oxide/porous rGO hybrids toward advanced LIBs and beyond.  相似文献   

19.
Developing low cost, long life, and high capacity rechargeable batteries is a critical factor towards developing next‐generation energy storage devices for practical applications. Therefore, a simple method to prepare graphene‐coated FeS2 embedded in carbon nanofibers is employed; the double protection from graphene coating and carbon fibers ensures high reversibility of FeS2 during sodiation/desodiation and improved conductivity, resulting in high rate capacity and long‐term life for Na+ (305.5 mAh g?1 at 3 A g?1 after 2450 cycles) and K+ (120 mAh g?1 at 1 A g?1 after 680 cycles) storage at room temperature. Benefitting from the enhanced conductivity and protection on graphene‐encapsulated FeS2 nanoparticles, the composites exhibit excellent electrochemical performance under low temperature (0 and ?20 °C), and temperature tolerance with stable capacity as sodium‐ion half‐cells. The Na‐ion full‐cells based on the above composites and Na3V2(PO4)3 can afford reversible capacity of 95 mAh g?1 at room temperature. Furthermore, the full‐cells deliver promising discharge capacity (50 mAh g?1 at 0 °C, 43 mAh g?1 at ?20 °C) and high energy density at low temperatures. Density functional theory calculations imply that graphene coating can effectively decrease the Na+ diffusion barrier between FeS2 and graphene heterointerface and promote the reversibility of Na+ storage in FeS2, resulting in advanced Na+ storage properties.  相似文献   

20.
The multishelled (Co2/3Mn1/3)(Co5/6Mn1/6)2O4 hollow microspheres with controllable shell numbers up to septuple shells are synthesized using developed sequential templating method. Exhilaratingly, the septuple‐shelled complex metal oxide hollow microsphere is synthesized for the first time by doping Mn into Co3O4, leading to the change of crystalline rate of precursor. Used as electrode materials for alkaline rechargeable battery, it shows a remarkable reversible capacity (236.39 mAh g?1 at a current density of 1 A g?1 by three‐electrode system and 106.85 mAh g?1 at 0.5 A g?1 in alkaline battery) and excellent cycling performance due to its unique structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号