首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Herein, an approach is reported for fabrication of Co‐Nx‐embedded 1D porous carbon nanofibers (CNFs) with graphitic carbon‐encased Co nanoparticles originated from metal–organic frameworks (MOFs), which is further explored as a bifunctional electrocatalyst for both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Electrochemical results reveal that the electrocatalyst prepared by pyrolysis at 1000 °C (CoNC‐CNF‐1000) exhibits excellent catalytic activity toward ORR that favors the four‐electron ORR process and outstanding long‐term stability with 86% current retention after 40 000 s. Meanwhile, it also shows superior electrocatalytic activity toward OER, reaching a lower potential of 1.68 V at 10 mA cm?2 and a potential gap of 0.88 V between the OER potential (at 10 mA cm?2) and the ORR half‐wave potential. The ORR and OER performance of CoNC‐CNF‐1000 have outperformed commercial Pt/C and most nonprecious‐metal catalysts reported to date. The remarkable ORR and OER catalytic performance can be mainly attributable to the unique 1D structure, such as higher graphitization degree beneficial for electronic mobility, hierarchical porosity facilitating the mass transport, and highly dispersed CoNxC active sites functionalized carbon framework. This strategy will shed light on the development of other MOF‐based carbon nanofibers for energy storage and electrochemical devices.  相似文献   

2.
Metal–organic frameworks (MOFs) and MOF‐derived materials have recently attracted considerable interest as alternatives to noble‐metal electrocatalysts. Herein, the rational design and synthesis of a new class of Co@N‐C materials (C‐MOF‐C2‐T) from a pair of enantiotopic chiral 3D MOFs by pyrolysis at temperature T is reported. The newly developed C‐MOF‐C2‐900 with a unique 3D hierarchical rodlike structure, consisting of homogeneously distributed cobalt nanoparticles encapsulated by partially graphitized N‐doped carbon rings along the rod length, exhibits higher electrocatalytic activities for oxygen reduction and oxygen evolution reactions (ORR and OER) than that of commercial Pt/C and RuO2, respectively. Primary Zn–air batteries based on C‐MOF‐900 for the oxygen reduction reaction (ORR) operated at a discharge potential of 1.30 V with a specific capacity of 741 mA h gZn–1 under 10 mA cm–2. Rechargeable Zn–air batteries based on C‐MOF‐C2‐900 as an ORR and OER bifunctional catalyst exhibit initial charge and discharge potentials at 1.81 and 1.28 V (2 mA cm–2), along with an excellent cycling stability with no increase in polarization even after 120 h – outperform their counterparts based on noble‐metal‐based air electrodes. The resultant rechargeable Zn–air batteries are used to efficiently power electrochemical water‐splitting systems, demonstrating promising potential as integrated green energy systems for practical applications.  相似文献   

3.
Heterometallic metal–organic frameworks (MOFs) are constructed from two or more kinds of metal ions, while still remaining their original topologies. Due to distinct reaction kinetics during MOF formation, partial distribution of different metals within a single MOF crystal can lead to sophisticated heterogeneous nanostructures. Here, this study reports an investigation of reaction kinetics for different metal ions in a bimetallic MOF system, the ZIF‐8/67 (M(2‐mIM)2, M = Zn for ZIF‐8, and Co for ZIF‐67, 2‐mIM = 2‐methylimidazole), by in situ optical method. Distinct kinetics of the two metals forming single‐component MOFs are revealed, and when both Co and Zn ions are present in the starting solution, homogeneous distributions of the two metals are only achieved at high Co/Zn ratio, while at low Co/Zn ratio concentration gradient from Co‐rich cores to Zn‐rich shells is observed. Further, by adding the two metals in sequence, more sophisticated structures are achieved. Specifically, when Co2+ is added first, ZIF‐67@ZIF‐8/67 core–shell nanocrystals are achieved with tunable core/shell thickness ratio depending on the time intervals; while when Zn2+ is added first, only agglomerates of irregular shape form due to the weak nucleation ability of Zn2+.  相似文献   

4.
The development of new electrocatalysts for electrochemical oxygen reduction to replace expensive and rare platinum‐based catalysts is an important issue in energy storage and conversion research. In this context, conductive and porous metal–organic frameworks (MOFs) are considered promising materials for the oxygen reduction reaction (ORR) due to not only their high surface area and well‐developed pores but also versatile structural features and chemical compositions. Herein, the preparation of bimetallic conductive 2D MOFs (CoxNiy‐CATs) are reported for use as catalysts in the ORR. The ratio of the two metal ions (Co2+ and Ni2+) in the bimetallic CoxNiy‐CATs is rationally controlled to determine the optimal composition of CoxNiy‐CAT for efficient performance in the ORR. Indeed, bimetallic MOFs display enhanced ORR activity compared to their monometallic counterparts (Co‐CAT or Ni‐CAT). During the ORR, bimetallic CoxNiy‐CATs retain an advantageous characteristic of Co‐CAT in relation to its high diffusion‐limiting current density, as well as a key advantage of Ni‐CAT in relation to its high onset potential. Moreover, the ORR‐active bimetallic CoxNiy‐CAT with excellent ORR activity is prepared at a large scale via a convenient method using a ball‐mill reactor.  相似文献   

5.
Designing rational nanostructures of metal–organic frameworks based carbon materials to promote the bifunctional catalytic activity of the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is highly desired but still remains a great challenge. Herein, an in situ growth method to achieve 1D structure‐controllable zeolitic imidazolate frameworks (ZIFs)/polyacrylonitrile (PAN) core/shell fiber (PAN@ZIFs) is developed. Subsequent pyrolysis of this precursor can obtain a heteroatom‐doped carbon nanofiber network as an efficient bifunctional oxygen electrocatalyst. The electrocatalytic performance of derived carbon nanofiber is dominated by the structures of PAN@ZIFs fiber, which is facilely regulated by efficiently controlling the nucleation and growth process of ZIFs on the surface of polymer fiber as well as optimizing the components of ZIFs. Benefiting from the core–shell structures with appropriate dopants and porosity, as‐prepared catalysts show brilliant bifunctional ORR/OER catalytic activity and durability. Finally, the rechargeable Zn‐air battery assembled from the optimized catalyst (CNF@Zn/CoNC) displays a peak power density of 140.1 mW cm?2, energy density of 878.9 Wh kgZn?1, and excellent cyclic stability over 150 h, giving a promising performance in realistic application.  相似文献   

6.
Metal–nitrogen–carbon (M–C/N) electrocatalysts have been shown to have satisfactory catalytic activity and long-term durability for the oxygen reduction reaction (ORR). Here, a strategy to prepare a new electrocatalyst (Fe&Pd–C/N) using a unique metal-containing ionic liquid (IL) is exploited, in which Fe & Pd ions are positively charged species atomically dispersed by coordination to the N of the N-doped C substrate, C/N. X-ray absorption fine structure, XPS and aberration-corrected transmission electron microscopy results verified a well-defined dual-atom configuration comprising Fe+2.x–N4 coupled Pd2+–N4 sites and well-defined spatial distribution. Electronic control of a coupled Fe–Pd structure produces an electrocatalyst that exhibits superior performance with enhanced activity and durability for the ORR compared to that of commercial Pt/C (20%, Johnson Matthey) in both alkaline and acid media. Density functional theory calculations indicate that Pd atom can enhance the catalytic activity of the Fe active sites adjacent to Pd sites by changing the electronic orbital structure and Bader charge of the Fe centers. The excellent catalytic performance of the Fe&Pd–C/N electrocatalyst is demonstrated in zinc–air batteries and hydrogen–air fuel cells.  相似文献   

7.
Developing non‐precious‐metal bifunctional oxygen reduction and evolution reaction (ORR/OER) catalysts is a major task for promoting the reaction efficiency of Zn–air batteries. Co‐based catalysts have been regarded as promising ORR and OER catalysts owing to the multivalence characteristic of cobalt element. Herein, the synthesis of Co nanoislands rooted on Co–N–C nanosheets supported by carbon felts (Co/Co–N–C) is reported. Co nanosheets rooted on the carbon felt derived from electrodeposition are applied as the self‐template and cobalt source. The synergistic effect of metal Co islands with OER activity and Co–N–C nanosheets with superior ORR performance leads to good bifuctional catalytic performances. Wavelet transform extended X‐ray absorption fine spectroscopy and X‐ray photoelectron spectroscopy certify the formation of Co (mainly Co0) and the Co–N–C (mainly Co2+ and Co3+) structure. As the air‐cathode, the assembled aqueous Zn–air battery exhibits a small charge–discharge voltage gap (0.82 V@10 mA cm?2) and high power density of 132 mW cm?2, outperforming the commercial Pt/C catalyst. Additionally, the cable flexible rechargeable Zn–air battery exhibits excellent bendable and durability. Density functional theory calculation is combined with operando X‐ray absorption spectroscopy to further elucidate the active sites of oxygen reactions at the Co/Co–N–C cathode in Zn–air battery.  相似文献   

8.
Metal oxides of earth‐abundant elements are promising electrocatalysts to overcome the sluggish oxygen evolution and oxygen reduction reaction (OER/ORR) in many electrochemical energy‐conversion devices. However, it is difficult to control their catalytic activity precisely. Here, a general three‐stage synthesis strategy is described to produce a family of hybrid materials comprising amorphous bimetallic oxide nanoparticles anchored on N‐doped reduced graphene oxide with simultaneous control of nanoparticle elemental composition, size, and crystallinity. Amorphous Fe0.5Co0.5Ox is obtained from Prussian blue analog nanocrystals, showing excellent OER activity with a Tafel slope of 30.1 mV dec?1 and an overpotential of 257 mV for 10 mA cm?2 and superior ORR activity with a large limiting current density of ?5.25 mA cm?2 at 0.6 V. A fabricated Zn–air battery delivers a specific capacity of 756 mA h gZn?1 (corresponding to an energy density of 904 W h kgZn?1), a peak power density of 86 mW cm?2 and can be cycled over 120 h at 10 mA cm?2. Other two amorphous bimetallic, Ni0.4Fe0.6Ox and Ni0.33Co0.67Ox , are also produced to demonstrate the general applicability of this method for synthesizing binary metal oxides with controllable structures as electrocatalysts for energy conversion.  相似文献   

9.
Micrometer‐sized spherical aggregates of Sn and Co components containing core–shell, yolk–shell, hollow nanospheres are synthesized by applying nanoscale Kirkendall diffusion in the large‐scale spray drying process. The Sn2Co3–Co3SnC0.7–C composite microspheres uniformly dispersed with Sn2Co3–Co3SnC0.7 mixed nanocrystals are formed by the first‐step reduction of spray‐dried precursor powders at 900 °C. The second‐step oxidation process transforms the Sn2Co3–Co3SnC0.7–C composite into the porous microsphere composed of Sn–Sn2Co3@CoSnO3–Co3O4 core–shell, Sn–Sn2Co3@CoSnO3–Co3O4 yolk–shell, and CoSnO3–Co3O4 hollow nanospheres at 300, 400, and 500 °C, respectively. The discharge capacity of the microspheres with Sn–Sn2Co3@CoSnO3–Co3O4 core–shell, Sn‐Sn2Co3@CoSnO3–Co3O4 yolk–shell, and CoSnO3–Co3O4 hollow nanospheres for the 200th cycle at a current density of 1 A g?1 is 1265, 987, and 569 mA h g?1, respectively. The ultrafine primary nanoparticles with a core–shell structure improve the structural stability of the porous‐structured microspheres during repeated lithium insertion and desertion processes. The porous Sn–Sn2Co3@CoSnO3–Co3O4 microspheres with core–shell primary nanoparticles show excellent cycling and rate performances as anode materials for lithium‐ion batteries.  相似文献   

10.
Tailoring composition and morphology of electrocatalysts is of great importance in improving their catalytic performance. Herein, a salt‐templated strategy is proposed to construct novel multicomponent Co/CoxMy (M = P, N) hybrids with outstanding electrocatalytic performance for the oxygen evolution reaction (OER). The obtained Co/CoxMy hybrids present porous sheet‐like architecture consisting of many hierarchical secondary building‐units. The synthetic strategy depends on a facile and effective dissolution–recrystallization–pyrolysis process under NH3 atmosphere of the precursors, which does not involve any surfactant or long‐time hydrothermal pretreatment. That is different from the conventional methods for the synthesis of hierarchical nitrides/phosphides. Benefitting from unique composition/structure‐dependent merits, the Co/CoxMy hybrids as a typical Mott–Schottky electrocatalyst exhibit good OER performance in an alkaline medium compared with their counterparts, as evidenced by a low overpotential of 334 mV at 10 mA cm?2 and a small Tafel slope of 79.2 mV dec?1, as well as superior long‐term stability. More importantly, the Co/CoxMy+Pt/C achieves higher voltaic efficiency and several times longer cycle life than conventional RuO2+Pt/C catalysts in rechargeable Zn–air batteries. It is envisioned that the present work can provide a new avenue for the development of Mott–Schottky electrocatalysts for sustainable energy storage.  相似文献   

11.
A facile two‐step solution‐phase method has been developed for the preparation of hierarchical α‐MnO2 nanowires@Ni1‐xMnxOy nanoflakes core–shell nanostructures. Ultralong α‐MnO2 nanowires were synthesized by a hydrothermal method in the first step. Subsequently, Ni1‐xMnxOy nanoflakes were grown on α‐MnO2 nanowires to form core–shell nanostructures using chemical bath deposition followed by thermal annealing. Both solution‐phase methods can be easily scaled up for mass production. We have evaluated their application in supercapacitors. The ultralong one‐dimensional (1D) α‐MnO2 nanowires in hierarchical core–shell nanostructures offer a stable and efficient backbone for charge transport; while the two‐dimensional (2D) Ni1‐xMnxOy nanoflakes on α‐MnO2 nanowires provide high accessible surface to ions in the electrolyte. These beneficial features enable the electrode with high capacitance and reliable stability. The capacitance of the core–shell α‐MnO2@Ni1‐xMnxOy nanostructures (x = 0.75) is as high as 657 F g?1 at a current density of 250 mA g?1, and stable charging‐discharging cycling over 1000 times at a current density of 2000 mA g?1 has been realized.  相似文献   

12.
Iron–nitrogen–carbon materials (Fe–N–C) are known for their excellent oxygen reduction reaction (ORR) performance. Unfortunately, they generally show a laggard oxygen evolution reaction (OER) activity, which results in a lethargic charging performance in rechargeable Zn–air batteries. Here porous S‐doped Fe–N–C nanosheets are innovatively synthesized utilizing a scalable FeCl3‐encapsulated‐porphyra precursor pyrolysis strategy. The obtained electrocatalyst exhibits ultrahigh ORR activity (E1/2 = 0.84 V vs reversible hydrogen electrode) and impressive OER performance (Ej = 10 = 1.64 V). The potential gap (ΔE = Ej = 10 ? E1/2) is 0.80 V, outperforming that of most highly active bifunctional electrocatalysts reported to date. Furthermore, the key role of S involved in the atomically dispersed Fe–Nx species on the enhanced ORR and OER activities is expounded for the first time by ultrasound‐assisted extraction of the exclusive S source (taurine) from porphyra. Moreover, the assembled rechargeable Zn–air battery comprising this bifunctional electrocatalyst exhibits higher power density (225.1 mW cm?2) and lower charging–discharging overpotential (1.00 V, 100 mA cm?2 compared to Pt/C + RuO2 catalyst). The design strategy can expand the utilization of earth‐abundant biomaterial‐derived catalysts, and the mechanism investigations of S doping on the structure–activity relationship can inspire the progress of other functional electrocatalysts.  相似文献   

13.
Yolk–shell structured micro/nano‐sized materials have broad and important applications in different areas due to their unique spatial configurations. In this study, yolk–shell structured Co3O4@Co3O4 is prepared using a simple and scalable hydrothermal reaction, followed by a calcination process. Then, CoxCu1?xCo2O4@CoyCu1?yCo2O4 microspheres are synthesized via adsorption and calcination processes using the as‐prepared Co3O4@Co3O4 as the precursor. A possible formation mechanism of the yolk–shell structures is proposed based on the characterization results, which is different from those of yolk–shell structures in previous study. For the first time, the catalytic activity of yolk–shell structured catalysts in ammonia borane (AB) hydrolysis is studied. It is discovered that the yolk–shell structured CoxCu1?xCo2O4@CoyCu1?yCo2O4 microspheres exhibit high performance with a turnover frequency (TOF) of 81.8 molhydrogen min?1 molcat?1. This is one of the highest TOF values reported for a noble‐metal‐free catalyst in the literature. Additionally, the yolk–shell structured CoxCu1?xCo2O4@CoyCu1?yCo2O4 microspheres are highly stable and reusable. These yolk–shell structured CoxCu1?xCo2O4@CoyCu1?yCo2O4 microsphere is a promising catalyst candidate in AB hydrolysis considering the excellent catalytic behavior and low cost.  相似文献   

14.
The development of hierarchical nanostructures with highly active and durable multifunctional catalysts has a new significance in the context of new energy technologies of water splitting and metal–air batteries. Herein, a strategy is demonstrated to construct a 3D hierarchical oxygenated cobalt molybdenum selenide (O‐Co1?xMoxSe2) series with attractive nanoarchitectures, which are fabricated by a simple and cost‐effective hydrothermal process followed by an exclusive ion‐exchange process. Owing to its highly electroactive sites with numerous nanoporous networks and plentiful oxygen vacancies, the optimal O‐Co0.5Mo0.5Se2 could catalyze the hydrogen evolution reaction and oxygen evolution reaction effectively with a low overpotential of ≈102 and 189 mV, at a current density of 10 mA cm?2, respectively, and exceptional durability. Most importantly, the O‐Co0.5Mo0.5Se2||O‐Co0.5Mo0.5Se2 water splitting device only entails a voltage of ≈1.53 V at a current density of 10 mA cm?2, which is much better than benchmark Pt/C||RuO2 (≈1.56 V). Furthermore, O‐Co0.5Mo0.5Se2 air cathode‐based zinc–air batteries exhibit an excellent power density of 120.28 mW cm?2 and exceptional cycling stability for 60 h, superior to those of state‐of‐art Pt/C+RuO2 pair‐based zinc–air batteries. The present study provides a strategy to design hierarchical 3D oxygenated bimetallic selenide‐based multifunctional catalysts for energy conversion and storage systems.  相似文献   

15.
The oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are cornerstone reactions for many renewable energy technologies. Developing cheap yet durable substitutes of precious‐metal catalysts, especially the bifunctional electrocatalysts with high activity for both ORR and OER reactions and their streamlined coupling process, are highly desirable to reduce the processing cost and complexity of renewable energy systems. Here, a facile strategy is reported for synthesizing double‐shelled hybrid nanocages with outer shells of Co‐N‐doped graphitic carbon (Co‐NGC) and inner shells of N‐doped microporous carbon (NC) by templating against core–shell metal–organic frameworks. The double‐shelled NC@Co‐NGC nanocages well integrate the high activity of Co‐NGC shells into the robust NC hollow framework with enhanced diffusion kinetics, exhibiting superior electrocatalytic properties to Pt and RuO2 as a bifunctional electrocatalyst for ORR and OER, and hold a promise as efficient air electrode catalysts in Zn–air batteries. First‐principles calculations reveal that the high catalytic activities of Co‐NGC shells are due to the synergistic electron transfer and redistribution between the Co nanoparticles, the graphitic carbon, and the doped N species. Strong yet favorable adsorption of an OOH* intermediate on the high density of uncoordinated hollow‐site C atoms with respect to the Co lattice in the Co‐NGC structure is a vital rate‐determining step to achieve excellent bifunctional electrocatalytic activity.  相似文献   

16.
Manganese (Mn) is generally regarded as not being sufficiently active for the oxygen reduction reaction (ORR) compared to other transition metals such as Fe and Co. However, in biology, manganese‐containing enzymes can catalyze oxygen‐evolving reactions efficiently with a relative low onset potential. Here, atomically dispersed O and N atoms coordinated Mn active sites are incorporated within graphene frameworks to emulate both the structure and function of Mn cofactors in heme–copper oxidases superfamily. Unlike previous single‐metal catalysts with general M‐N‐C structures, here, it is proved that a coordinated O atom can also play a significant role in tuning the intrinsic catalytic activities of transition metals. The biomimetic electrocatalyst exhibits superior performance for the ORR and zinc–air batteries under alkaline conditions, which is even better than that of commercial Pt/C. The excellent performance can be ascribed to the abundant atomically dispersed Mn cofactors in the graphene frameworks, confirmed by various characterization methods. Theoretical calculations reveal that the intrinsic catalytic activity of metal Mn can be significantly improved via changing local geometry of nearest coordinated O and N atoms. Especially, graphene frameworks containing the Mn‐N3O1 cofactor demonstrate the fastest ORR kinetics due to the tuning of the d electronic states to a reasonable state.  相似文献   

17.
Manganese oxides (MnOx) are promising anode materials for lithium ion batteries, but they generally exhibit mediocre performances due to intrinsic low ionic conductivity, high polarization, and poor stability. Herein, yolk–shell nanorods comprising of nitrogen‐doped carbon (N–C) coating on manganese monoxide (MnO) coupled with zinc manganate (ZnMn2O4) nanoparticles are manufactured via one‐step carbonization of α‐MnO2/ZIF‐8 precursors. When evaluated as anodes for lithium ion batteries, MnO@ZnMn2O4/N–C exhibits an reversible capacity of 803 mAh g?1 at 50 mA g?1 after 100 cycles, excellent cyclability with a capacity of 595 mAh g?1 at 1000 mAg?1 after 200 cycles, as well as better rate capability compared with those non‐N–C shelled manganese oxides (MnOx). The outstanding electrochemical performance is attributed to the unique yolk–shell nanorod structure, the coating effect of N–C and nanoscale size.  相似文献   

18.
Searching for highly efficient bifunctional electrocatalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) using nonnoble metal‐based catalysts is essential for the development of many energy conversion systems, including rechargeable fuel cells and metal–air batteries. Here, Co9–xFexS8/Co,Fe‐N‐C hybrids wrapped by reduced graphene oxide (rGO) (abbreviated as S‐Co9–xFexS8@rGO) are synthesized through a semivulcanization and calcination method using graphene oxide (GO) wrapped bimetallic zeolite imidazolate framework (ZIF) Co,Fe‐ZIF (CoFe‐ZIF@GO) as precursors. Benefiting from the synergistic effect of OER active CoFeS and ORR active Co,Fe‐N‐C in a single component, as well as high dispersity and enhanced conductivity derived from rGO coating and Fe‐doping, the obtained S‐Co9–xFexS8@rGO‐10 catalyst shows an ultrasmall overpotential of ≈0.29 V at 10 mA cm?2 in OER and a half‐wave potential of 0.84 V in ORR, combining a superior oxygen electrode activity of ≈0.68 V in 0.1 m KOH.  相似文献   

19.
A transition‐metal–nitrogen/carbon (TM–N/C, TM = Fe, Co, Ni, etc.) system is a popular, nonprecious‐metal oxygen reduction reaction (ORR) electrocatalyst for fuel cell and metal–air battery applications. However, there remains a lack of comprehensive understanding about the ORR electrocatalytic mechanism on these catalysts, especially the roles of different forms of metal species on electrocatalytic performance. Here, a novel Cu?N/C ORR electrocatalyst with a hybrid Cu coordination site is successfully fabricated with a simple but efficient metal–organic‐framework‐based, metal‐doping‐induced synthesis strategy. By directly pyrolyzing Cu‐doped zeolitic‐imidazolate‐framework‐8 polyhedrons, the obtained Cu?N/C catalyst can achieve a high specific surface area of 1182 m2 g?1 with a refined hierarchical porous structure and a high surface N content of 11.05 at%. Moreover, regulating the Cu loading can efficiently tune the states of Cu(II) and Cu0, resulting in the successful construction of a highly active hybrid coordination site of N?Cu(II)?Cu0 in derived Cu?N/C catalysts. As a result, the optimized 25% Cu?N/C catalyst possesses a high ORR activity and stability in 0.1 m KOH solution, as well as excellent performance and stability in a Zn–air battery.  相似文献   

20.
Expedition of electron transfer efficiency and optimization of surface reactant adsorption products desorption processes are two main challenges for developing non‐noble catalysts in the oxygen reduction reaction (ORR) and CO2 reduction reaction (CRR). A heterojunction prototype on Co3S4@Co3O4 core–shell octahedron structure is established via hydrothermal lattice anion exchange protocol to implement the electroreduction of oxygen and carbon dioxide with high performance. The synergistic bifunctional catalyst consists of p‐type Co3O4 core and n‐type Co3S4 shell, which afford high surface electron density along with high capacitance without sacrificing mechanical robustness. A four electron ORR process, identical to the Pt catalyzed ORR, is validated using the core–shell octahedron catalyst. The synergistic interaction between cobalt sulfide and cobalt oxide bicatalyst reduces the activation energy to convert CO2 into adsorbed intermediates and hereby enables CRR to run at a low overpotential, with formate as the highly selective main product at a high faraday efficiency of 85.3%. The remarkable performance can be ascribed to the synergistic coupling effect of the structured co‐catalysts; heterojunction structure expedites the electron transfer efficiency and optimizes surface reactant adsorption product desorption processes, which also provide theoretical and pragmatic guideline for catalyst development and mechanism explorations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号