首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
DNA‐mediated assembly of core–satellite structures composed of Zr(IV)‐based porphyrinic metal‐organic framework (MOF) and NaYF4,Yb,Er upconverting nanoparticles (UCNPs) for photodynamic therapy (PDT) is reported. MOF NPs generate singlet oxygen (1O2) upon photoirradiation with visible light without the need for additional small molecule, diffusional photosensitizers such as porphyrins. Using DNA as a templating agent, well‐defined MOF–UCNP clusters are produced where UCNPs are spatially organized around a centrally located MOF NP. Under NIR irradiation, visible light emitted from the UCNPs is absorbed by the core MOF NP to produce 1O2 at significantly greater amounts than what can be produced from simply mixing UCNPs and MOF NPs. The MOF–UCNP core–satellite superstructures also induce strong cell cytotoxicity against cancer cells, which are further enhanced by attaching epidermal growth factor receptor targeting affibodies to the PDT clusters, highlighting their promise as theranostic photodynamic agents.  相似文献   

2.
Photodynamic therapy (PDT) is a promising technique for cancer therapy, providing good therapeutic efficacy with minimized side effect. However, the lack of oxygen supply in the hypoxic tumor site obviously restricts the generation of singlet oxygen (1O2), thus limiting the efficacy of PDT. So far, the strategies to improve PDT efficacy usually rely on complicated nanosystems, which require sophisticated design or complex synthetic procedure. Herein, iodine‐rich semiconducting polymer nanoparticles (SPN‐I) for enhanced PDT, using iodine‐induced intermolecular heavy‐atom effect to elevate the 1O2 generation, are designed and prepared. The nanoparticles are composed of a near‐infrared (NIR) absorbing semiconducting polymer (PCPDTBT) serving as the photosensitizer and source of fluorescence signal, and an iodine‐grafted amphiphilic diblock copolymer (PEG‐PHEMA‐I) serving as the 1O2 generation enhancer and nanocarrier. Compared with SPN composed of PEG‐b‐PPG‐b‐PEG and PCPDTBT (SPN‐P), SPN‐I can enhance the 1O2 generation by 1.5‐fold. In addition, SPN‐I have high X‐ray attenuation coefficient because of the high density of iodine in PEG‐PHEMA‐I, providing SPN‐I the ability of use with computed tomography (CT) and fluorescence dual‐modal imaging. The study thus provides a simple nanotheranostic platform composed of two components for efficient CT/fluorescence dual‐modal imaging‐guided enhanced PDT.  相似文献   

3.
Engineering a facile and controllable approach to modulate the spectral properties of lanthanide‐doped upconversion nanoparticles (UCNPs) is always an ongoing challenge. Herein, long‐range ordered, distinct two‐dimensional (2D) binary nanoparticle superlattices (BNSLs) composed of NaREF4:Yb/Er (RE = Y and Gd) UCNPs and plasmonic metallic nanoparticles (Au NPs), including AB, AB3, and AB13 lattices, are fabricated via a slow evaporation‐driven self‐assembly to achieve plasmonic modulation of upconversion luminescence (UCL). Optical measurements reveal that typical red–green UCL from UCNPs can be effectively modulated into reddish output in BNSLs, with a drastically shortened lifetime. Notably, for AB3‐ and AB13‐type BNSLs with more proximal Au NPs around each UCNP, modified UCL with fine‐structured spectral lineshape is observed. These differences could be interpreted by the interplay of collective plasmon resonance introduced by 2D periodic Au arrays and spectrally selective energy transfer between UCNPs and Au. Thus, fabricating UCNP‐Au BNSLs with desired lattice parameters and NP configurations could be a promising way to tailor the UCL through controlled plasmonic modulation.  相似文献   

4.
Photodynamic therapy (PDT), which relies on photosensitizers (PS) and light to generate reactive oxygen species to kill cancer cells or bacteria, has attracted much attention in recent years. PSs with both bright emission and efficient singlet oxygen generation have also been used for image‐guided PDT. However, simultaneously achieving effective 1O2 generation, long wavelength absorption, and stable near‐infrared (NIR) emission with low dark toxicity in a single PS remains challenging. In addition, it is well known that when traditional PSs are made into nanoparticles, they encounter quenched fluorescence and reduced 1O2 production. In this contribution, these challenging issues have been successfully addressed through designing the first photostable photosensitizer with aggregation‐induced NIR emission and very effective 1O2 generation in aggregate state. The yielded nanoparticles show very effective 1O2 generation, bright NIR fluorescence centered at 820 nm, excellent photostability, good biocompatibility, and negligible dark in vivo toxicity. Both in vitro and in vivo experiments prove that the nanoparticles are excellent candidates for image‐guided photodynamic anticancer therapy.  相似文献   

5.
The exploitation of photocatalysts that harvest solar spectrum as broad as possible remains a high‐priority target yet grand challenge. In this work, for the first time, metal–organic framework (MOF) composites are rationally fabricated to achieve broadband spectral response from UV to near‐infrared (NIR) region. In the core–shell structured upconversion nanoparticles (UCNPs)‐Pt@MOF/Au composites, the MOF is responsive to UV and a bit visible light, the plasmonic Au nanoparticles (NPs) accept visible light, whereas the UCNPs absorb NIR light to emit UV and visible light that are harvested by the MOF and Au once again. Moreover, the MOF not only facilitates the generation of “bare and clean” Au NPs on its surface and realizes the spatial separation for the Au and Pt NPs, but also provides necessary access for catalytic substrates/products to Pt active sites. As a result, the optimized composite exhibits excellent photocatalytic hydrogen production activity (280 µmol g?1 h?1) under simulated solar light, and the involved mechanism of photocatalytic H2 production under UV, visible, and NIR irradiation is elucidated. Reportedly, this is an extremely rare study on photocatalytic H2 production by light harvesting in all UV, visible, and NIR regions.  相似文献   

6.
Upconversion (UC) nanoparticles (UCNPs) have evoked considerable attention in many fields owing to their fascinating features. However, rigorous synthesis conditions and expensive raw materials often limit their further applications. Here, a novel hexagonal phase NaBiF4 UC matrix through a very facile method (one min only at room temperature) is synthesized. The nanoparticles show good monodispersity with uniform size. Under the 980 nm irradiation, Yb3+/Ln3+ (Ln = Er, Ho, Tm) codoped NaBiF4 nanoparticles show excellent UC luminescence (UCL). This super facile synthesis strategy and excellent matrix materials enable to achieve UCL in such low temperature, opening a new gateway for the UCNPs applied to a variety of areas in the future.  相似文献   

7.
Photodynamic therapy (PDT) based on photosensitizers (PSs) constructed with nanomaterials has become popular in cancer treatment, especially oral carcinoma cell. This therapy is characterized by improved PS accumulation in tumor regions and generation of reactive oxygen species (ROS) for PDT under specific excitation. In the selection of near‐infrared (NIR) window, 808 nm NIR light because it can avoid the absorption of water is particularly suitable for the application in PDT. Hence, multiband emissions under a single 808 nm near‐infrared excitation of Nd3+‐sensitized upconversion nanoparticles (808 nm UCNPs) have been applied for the PDT effect. 808 nm UCNPs serve as light converter to emit UV light to excite inorganic PS, graphitic carbon nitride quantum dots (CNQDs), thereby generating ROS. In this study, a nanocomposite consisting UCNPs conjugated with poly‐l ‐lysine (PLL) to improve binding with CNQDs is fabricated. According to the research results, NIR‐triggered nanocomposites of 808 nm UCNP‐PLL@CNs have been verified by significant improvement in ROS generation. Consequently, 808 nm UCNP‐PLL@CNs exhibit high capability for ROS production and efficient PDT in vitro and in vivo. Moreover, the mechanism of PDT treatment by 808 nm UCNP‐PLL@CNs is evaluated using the cell apoptosis pathway.  相似文献   

8.
Local hypoxia in tumors, as well as the short lifetime and limited action region of 1O2, are undesirable impediments for photodynamic therapy (PDT), leading to a greatly reduced effectiveness. To overcome these adversities, a mitochondria‐targeting, H2O2‐activatable, and O2‐evolving PDT nanoplatform is developed based on FeIII‐doped two‐dimensional C3N4 nanofusiform for highly selective and efficient cancer treatment. The ultrahigh surface area of 2D nanosheets enhances the photosensitizer (PS) loading capacity and the doping of FeIII leads to peroxidase mimetics with excellent catalytic performance towards H2O2 in cancer cells to generate O2. As such tumor hypoxia can be overcome and the PDT efficacy is improved, whilst at the same time endowing the PDT theranostic agent with an effective T 1‐weighted in vivo magnetic resonance imaging (MRI) ability. Conjugation with a mitochondria‐targeting agent could further increase the sensitivity of cancer cells to 1O2 by enhanced mitochondria dysfunction. In vitro and in vivo anticancer studies demonstrate an outstanding therapeutic effectiveness of the developed PDT agent, leading to almost complete destruction of mouse cervical tumor. This development offers an attractive theranostic agent for in vivo MRI and synergistic photodynamic therapy toward clinical applications.  相似文献   

9.
Lanthanide-based upconversion nanoparticles (UCNPs) have been widely explored in various fields, including optical imaging, in recent years. Although earlier work has shown that UCNPs with different lanthanide (Ln3+) dopants exhibit various colors, multicolor-especially in vivo multiplexed biomedical imaging-using UCNPs has rarely been reported. In this work, we synthesize a series of UCNPs with different emission colors and functionalize them with an amphiphilic polymer to confer water solubility. Multicolor in vivo upconversion luminescence (UCL) imaging is demonstrated by imaging subcutaneously injected UCNPs and applied in multiplexed in vivo lymph node mapping. We also use UCNPs for multicolor cancer cell labeling and realize in vivo cell tracking by UCL imaging. Moreover, for the first time we compare the in vivo imaging sensitivity of quantum dot (QD)-based fluorescence imaging and UCNP-based UCL imaging side by side, and find the in vivo detection limit of UCNPs to be at least one order of magnitude lower than that of QDs in our current non-optimized imaging system. Our data suggest that, by virtue of their unique optical properties, UCNPs have great potential for use in highly-sensitive multiplexed biomedical imaging.   相似文献   

10.
Hypoxia severely impedes photodynamic therapy (PDT) efficiency. Worse still, considerable tumor metastasis will occur after PDT. Herein, an organic superoxide radical (O2??) nano‐photogenerator as a highly effcient type I photosensitizer with robust vascular‐disrupting efficiency to combat these thorny issues is designed. Boron difluoride dipyrromethene (BODIPY)‐vadimezan conjugate (BDPVDA) is synthesized and enwrapped in electron‐rich polymer‐brushes methoxy‐poly(ethylene glycol)‐b‐poly(2‐(diisopropylamino) ethyl methacrylate) (mPEG‐ PPDA) to afford nanosized hydrophilic type I photosensitizer (PBV NPs). Owing to outstanding core–shell intermolecular electron transfer between BDPVDA and mPEG‐PPDA, remarkable O2?? can be produced by PBV NPs under near‐infrared irradiation even in severe hypoxic environment (2% O2), thus to accomplish effective hypoxic‐tumor elimination. Simultaneously, the efficient ester‐bond hydrolysis of BDPVDA in the acidic tumor microenvironment allows vadimezan release from PBV NPs to disrupt vasculature, facilitating the shut‐down of metastatic pathways. As a result, PBV NPs will not only be powerful in resolving the paradox between traditional type II PDT and hypoxia, but also successfully prevent tumor metastasis after type I PDT treatment (no secondary‐tumors found in 70 days and 100% survival rate), enabling enhancement of existing hypoxic‐and‐metastatic tumor treatment.  相似文献   

11.
Upconverting nanoparticles (UCNPs) have attracted considerable attention as potential photosensitizer carriers for photodynamic therapy (PDT) in deep tissues. In this work, a new and efficient NIR photosensitizing nanoplatform for PDT based on red‐emitting UCNPs is designed. The red emission band matches well with the efficient absorption bands of the widely used commercially available photosensitizers (Ps), benefiting the fluorescence resonance energy transfer (FRET) from UCNPs to the attached photosensitizers and thus efficiently activating them to generate cytotoxic singlet oxygen. Three commonly used photosensitizers, including chlorine e6 (Ce6), zinc phthalocyanine (ZnPc) and methylene blue (MB), are loaded onto the alpha‐cyclodextrin‐modified UCNPs to form Ps@UCNPs complexes that efficiently produce singlet oxygen to kill cancer cells under 980 nm near‐infrared excitation. Moreover, two different kinds of drugs are co‐loaded onto these nanoparticles: chemotherapy drug doxorubicin and PDT agent Ce6. The combinational therapy based on doxorubicin (DOX)‐induced chemotherapy and Ce6‐triggered PDT exhibits higher therapeutic efficacy relative to the individual means for cancer therapy in vitro.  相似文献   

12.
Lanthanide (Ln3+)‐doped upconversion nanoparticles (UCNPs) as a new generation of multimodal bioprobes have attracted great interest for theranostic purpose. Herein, red emitting nonstoichiometric Na0.52YbF3.52:Er UCNPs of high luminescence intensity and color purity are synthesized via a facile solvothermal method. The red UC emission from the present nanophosphors is three times more intense than the well‐known green emission from the ≈30 nm sized hexagonal‐phase NaYF4:Yb,Er UCNPs. By utilizing Na0.52YbF3.52:Er@SrF2 UCNPs as multifunctional nanoplatforms, highly efficient in vitro and in vivo 915 nm light‐triggered photodynamic therapies are realized for the first time, with dramatically diminished overheating yet similar therapeutic effects in comparison to those triggered by 980 nm light. Moreover, by virtue of the high transverse relaxivity (r 2) and the strong X‐ray attenuation ability of Yb3+ ions, these UCNPs also demonstrate good performances as contrast agents for high contrast magnetic resonance and X‐ray computed tomography dual‐modal imaging. Our research shows the great potential of the red emitting Na0.52YbF3.52:Er UCNPs for multimodal imaging‐guided photodynamic therapy of tumors.  相似文献   

13.
Tumor hypoxia severely limits the efficacy of traditional photodynamic therapy (PDT). Here, a liposome‐based nanoparticle (designated as LipoMB/CaO2) with O2 self‐sufficient property for dual‐stage light‐driven PDT is demonstrated to address this problem. Through a short time irradiation, 1O2 activated by the photosensitizer methylene blue (MB) can induce lipid peroxidation to break the liposome, and enlarge the contact area of CaO2 with H2O, resulting in accelerated O2 production. Accelerated O2 level further regulates hypoxic tumor microenvironment and in turn improves 1O2 generation by MB under another long time irradiation. In vitro and in vivo experiments also demonstrate the superior competence of LipoMB/CaO2 to alleviate tumor hypoxia, suppress tumor growth and antitumor metastasis with low side‐effect. The O2 self‐sufficient LipoMB/CaO2 nanoplatform with dual‐stage light manipulation is a successful attempt for PDT against hypoxic tumor.  相似文献   

14.
Photosensitizers (PS) are an essential component of photodynamic therapy (PDT). Conventional PSs are often porphyrin derivatives, which are associated with high hydrophobicity, low quantum yield in aqueous solutions, and suboptimal tumor‐to‐normal‐tissue (T/N) selectivity. There have been extensive efforts to load PSs into nanoparticle carriers to improve pharmacokinetics. The approach, however, is often limited by PS self‐quenching, pre‐mature release, and nanoparticle accumulation in the reticuloendothelial system organs. Herein, a novel, nanoparticle‐based PS made of gadolinium‐encapsulated graphene carbon nanoparticles (Gd@GCNs), which feature a high 1O2 quantum yield, is reported. Meanwhile, Gd@GCNs afford strong fluorescence and high T1 relaxivity (16.0 × 10?3m ?1 s?1, 7 T), making them an intrinsically dual‐modal imaging probe. Having a size of approximately 5 nm, Gd@GCNs can accumulate in tumors through the enhanced permeability and retention effect. The unbound Gd@GCNs cause little toxicity because Gd is safely encapsulated within an inert carbon shell and because the particles are efficiently excreted from the host through renal clearance. Studies with rodent tumor models demonstrate the potential of the Gd@GCNs to mediate image‐guided PDT for cancer treatment. Overall, the present study shows that Gd@GCNs possess unique physical, pharmaceutical, and toxicological properties and are an all‐in‐one nanotheranostic tool with substantial clinical translation potential.  相似文献   

15.
Drug‐eluting stents (DESs) are promising candidates for treating human oesophageal cancer. However, the use of DESs to assist photodynamic therapy (PDT) of orthotopic oesophageal tumors is not yet demonstrated to the best of current knowledge. Herein, through an electrospinning technology it is shown that oxygen‐producing manganese dioxide nanoparticles are embedded into elelctrospun fibers, which are subsequently covered onto stents. Upon implantation, the nanoparticles are gradually released from the fibers and then diffuse into the nearby tumor tissue. Then, the hypoxic microenvironment can be effectively alleviated by reaction of MnO2 with the endogenous H2O2 within the tumor. After demonstrating the excellent PDT efficacy of the stents in a conventional subcutaneous mouse tumor model, such stents are further used for PDT treatment in a rabbit orthotopic oesophageal cancer model by inserting an optical fiber into the tumor site. Greatly prolonged survival of rabbits is observed after such intraluminal PDT treatment. Taken together, this work shows that the fiber‐covered stent as a nanoparticle delivery platform can enable effective PDT as a noninvasive treatment method for patients with advanced‐stage oesophageal cancer.  相似文献   

16.
Hydrogen sulfide (H2S) is an important gaseous signaling agent mediated by many physiological processes and diseases. In order to explore its role in biological signaling, much effort has been focused on developing organic fluorescent probes to image H2S. However, these downconversion H2S probes are impractical for bio‐imaging beyond a certain depth because of the short tissue penetration of UV/visible light (as an excitation source). In most circumstance, these probes are also not suitable for long‐term assay due to photo‐bleaching. Herein, a new design to detect H2S based on the coumarin‐hemicyanine (CHC1)‐modified upconversion nanophosphors is reported. This inorganic–organic integrated nanoprobe is demonstrated to display a fast response time with a large ratiometric upconversion luminescence (UCL) enhancement, and extraordinary photo‐stability. CHC1‐UCNPs not only can be used for ratiometric UCL monitoring of pseudo‐enzymatic H2S production in living cells, but can also be used to identify the risk of endotoxic shock through ratiometric UCL imaging of tissue and measurement of endogenous H2S levels in plasma. The first ratiometric UCL H2S nanoprobe reported here may be further developed as the next‐generation diagnostic tool for the detection of inflammatory‐related diseases.  相似文献   

17.
The coupling of upconversion nanophosphors (UCNPs) with the surface plasmonic resonance (SPR) of noble metals is a promising way to improve luminescent efficiency of UCNPs; however, it is still a challenge to achieve stable, reproducible and effective upconversion luminescence (UCL) enhancement through such coupling. In this work, we present a novel strategy to improve UCL of NaYF4:ybB,Er3. UCNPs, by combining the near-field coupling of SPR of silver and the far-field coupling of poly(methyl methacrylate) (PMMA) opal photonic crystals (OPCs) with the UCNPs. In order to control the effective interaction distance between the UCNPs and the SPR, a porous silver film consisting of randomly distributed silver nanoparticles (NPs) (〉 100 nm) was prepared which demonstrated strong SPR over a broad wavelength range, and its coupling to the UCNPs was found to be much stronger than that of a dense film. In the far-field coupling of OPCs, the photonic stop band (PSB) of the PMMA OPCs was tuned to 980 nm, matching exactly the excitation light. By modulating the particle size of the UCNPs, and the direction and excitation power of the incident light, a maximum enhancement of 60-fold was observed, which is an important advance for metaMnduced UCL enhancement systems.  相似文献   

18.
Intracellular microRNAs imaging based on upconversion nanoprobes has great potential in cancer diagnostics and treatments. However, the relatively low detection sensitivity limits their application. Herein, a lock‐like DNA (LLD) generated by a hairpin DNA (H1) hybridizing with a bolt DNA (bDNA) sequence is designed, which is used to program upconversion nanoparticles (UCNPs, NaYF4@NaYF4:Yb, Er@NaYF4) and gold nanoparticles (AuNPs). The upconversion emission is quenched through luminescence resonance energy transfer (LRET). The multiple LLD can be repeatedly opened by one copy of target microRNA under the aid of fuel hairpin DNA strands (H2) to trigger disassembly of AuNPs from the UCNP, resulting in the lighting up of UCNPs with a high detection signal gain. This strategy is verified using microRNA‐21 as model. The expression level of microRNA‐21 in various cells lines can be sensitively measured in vitro, meanwhile cancer cells and normal cells can be easily and accurately distinguished by intracellular microRNA‐21 imaging via the nanoprobes. The detection limit is about 1000 times lower than that of the previously reported upconversion nanoprobes without signal amplification. This is the first time a nonenzymatic signal amplification method has been combined with UCNPs for imaging intracellular microRNAs, which has great potential for cancer diagnosis.  相似文献   

19.
Active and stable catalysts are highly desired for converting harmful substances (e.g., CO, NOx) in exhaust gases of vehicles into safe gases at low exhaust temperatures. Here, a solvent evaporation–induced co‐assembly process is employed to design ordered mesoporous CexZr1?xO2 (0 ≤ x ≤ 1) solid solutions by using high‐molecular‐weight poly(ethylene oxide)‐block‐polystyrene as the template. The obtained mesoporous CexZr1?xO2 possesses high surface area (60–100 m2 g?1) and large pore size (12–15 nm), enabling its great capacity in stably immobilizing Pt nanoparticles (4.0 nm) without blocking pore channels. The obtained mesoporous Pt/Ce0.8Zr0.2O2 catalyst exhibits superior CO oxidation activity with a very low T100 value of 130 °C (temperature of 100% CO conversion) and excellent stability due to the rich lattice oxygen vacancies in the Ce0.8Zr0.2O2 framework. The simulated catalytic evaluations of CO oxidation combined with various characterizations reveal that the intrinsic high surface oxygen mobility and well‐interconnected pore structure of the mesoporous Pt/Ce0.8Zr0.2O2 catalyst are responsible for the remarkable catalytic efficiency. Additionally, compared with mesoporous Pt/CexZr1?xO2‐s with small pore size (3.8 nm), ordered mesoporous Pt/CexZr1?xO2 not only facilitates the mass diffusion of reactants and products, but also provides abundant anchoring sites for Pt nanoparticles and numerous exposed catalytically active interfaces for efficient heterogeneous catalysis.  相似文献   

20.
At the core of luminescence color and lifetime tuning of rare earth doped upconverting nanoparticles (UCNPs), is the understanding of the impact of the particle architecture for commonly used sensitizer (S) and activator (A) ions. In this respect, a series of core@shell NaYF4 UCNPs doped with Yb3+ and Ho3+ ions are presented here, where the same dopant concentrations are distributed in different particle architectures following the scheme: YbHo core and YbHo@…, …@YbHo, Yb@Ho, Ho@Yb, YbHo@Yb, and Yb@YbHo core–shell NPs. As revealed by quantitative steady‐state and time‐resolved luminescence studies, the relative spatial distribution of the A and S ions in the UCNPs and their protection from surface quenching has a critical impact on their luminescence characteristics. Although the increased amount of Yb3+ ions boosts UCNP performance by amplifying the absorption, the Yb3+ ions can also efficiently dissipate the energy stored in the material through energy migration to the surface, thereby reducing the overall energy transfer efficiency to the activator ions. The results provide yet another proof that UC phosphor chemistry combined with materials engineering through intentional core@shell structures may help to fine‐tune the luminescence features of UCNPs for their specific future applications in biosensing, bioimaging, photovoltaics, and display technologies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号