首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For wind power generation offshore sites offer significantly better wind conditions compared to onshore. At the same time, the demand for raw materials and therefore the related environmental impacts increase due to technically more demanding wind energy converters and additional components (e.g. substructure) for the balance of plant. Additionally, due to environmental concerns offshore wind farms will be sited farshore (i.e. in deep water) in the future having a significant impact on the operation and maintenance efforts (O&M). Against this background the goal of this analysis is an assessment of the specific GHG (greenhouse gas) emissions as a function of the site conditions, the wind mill technology and the O&M necessities. Therefore, a representative offshore wind farm is defined and subjected to a detailed LCA (life cycle assessment). Based on parameter variations and modifications within the technical and logistical system, promising configurations regarding GHG emissions are determined for different site conditions. Results show, that all parameters related to the energy yield have a distinctive impact on the specific GHG emissions, whereas the distance to shore and the water depth affect the results marginally. By utilizing the given improvement potentials GHG emissions of electricity from offshore wind farms are comparable to those achieved onshore.  相似文献   

2.
The renewable energy sources are often presented as ‘clean’ sources, not considering the environmental impacts related to their manufacture. The production of the renewable plants, like every production process, entails a consumption of energy and raw materials as well as the release of pollutants. Furthermore, the impacts related to some life cycle phases (as maintenance or installation) are sometimes neglected or not adequately investigated.The energy and the environmental performances of one of the most common renewable technologies have been studied: the solar thermal collector for sanitary warm water demand. A life cycle assessment (LCA) has been performed following the international standards of series ISO 14040. The aim is to trace the product's eco-profile that synthesises the main energy and environmental impacts related to the whole product's life cycle. The following phases have been investigated: production and deliver of energy and raw materials, production process, installation, maintenance, disposal and transports occurring during each step. The analysis is carried out on the basis of data directly collected in an Italian factory.  相似文献   

3.
Life cycle assessment of a wind farm and related externalities   总被引:1,自引:0,他引:1  
This paper concentrates on the assessment of energy and emissions related to the production and manufacture of materials for an offshore wind farm as well as a wind farm on land based on a life cycle analysis (LCA) model. In Denmark a model has been developed for life cycle assessments of different materials. The model is able to assess the energy use related to the production, transportation and manufacture of 1 kg of material. The energy use is divided into fuels used in order to estimate the emissions through the life cycle. In the paper the model and the attached assumptions are described, and the model is demonstrated for two wind farms. The externalities for the wind farms are reported, showing the importance of life cycle assessment for renewable energy technologies.  相似文献   

4.
Starting from the results of a life cycle assessment of solar thermal collector for sanitary warm water, an energy balance between the employed energy during the collector life cycle and the energy saved thanks to the collector use has been investigated. A sensitivity analysis for estimating the effects of the chosen methods and data on the outcome of the study was carried out. Uncertainties due to the eco-profile of input materials and the initial assumptions have been analysed.Since the study is concerned with a renewable energy system, attention has been focused on the energy indexes and in particular the “global energy consumption”. Following the principles of Kyoto Protocol, the variations of CO2 emissions have also been studied.  相似文献   

5.
This study suggests strategies for conducting an offshore wind farm site selection and evaluates feasible offshore wind farm sites in the coastal areas of Jeju Island, South Korea. The site selection criteria are classified into four categories: energy resources and economics, conservation areas and landscape protection, human activities, and the marine environment and marine ecology. We used marine spatial techniques from GIS and the investigated resources available in the country. The results indicate that offshore wind farms can be located along a wide range of the eastern and western coasts of Jeju Island, considering energy resources and economics only. However, when considering the four categories presented in this study, the number of feasible offshore wind farm sites was significantly less than when only energy resources and economics were considered. The data and analysis presented in this study will be useful for the offshore wind farm site selection around Jeju Island, and it will also contribute to minimizing the environmental impacts and reducing the social conflicts between stakeholders.  相似文献   

6.
This study aimed to identify the environmental and economic aspects of the wind-hydrogen system using life cycle assessment (LCA) and life cycle costing (LCC) methodologies. The target H2 pathways are the H2 pathway of water electrolysis (WE) with wind power (WE[Wind]) and the H2 pathway of WE by Korean electricity mix (WE[KEM]). Conventional fuels (gasoline and diesel) are also included as target fuel pathways to identify the fuel pathways with economic and environmental advantages over conventional fuels. The key environmental issues in the transportation sector are analyzed in terms of fossil fuel consumption (FFC), regulated air pollutants (RAPs), abiotic resource depletion (ARD), and global warming (GW). The life cycle costs of the target fuel pathways consist of the well-to-tank (WTT) costs and the tank-to-wheel (TTW) costs. Moreover, two scenarios are analyzed to predict potential economic and environmental improvements offered by wind energy-powered hydrogen stations.  相似文献   

7.
老爷庙风电场风能资源评价   总被引:3,自引:0,他引:3  
本文利用老爷庙风电场2001年4月~2002年4月逐时平均风向、风速资料,对老爷庙风电场的风能资源各参数进行了计算和分析,并与附近星子气象站累年或同期资料进行比较,对老爷庙风电场风能资源进行评价。  相似文献   

8.
The conversion of wood to synthetic natural gas (SNG) via gasification and catalytic methanation is a renewable close to commercialization technology that could substitute fossil fuels and alleviate global warming. In order to assure that it is beneficial from the environmental perspective, a cradle to grave life cycle assessment (LCA) of SNG from a first-of-its-kind polygeneration unit for heating, electricity generation, and transportation was conducted. These SNG systems were compared to fossil and conventional wood reference systems and environmental benefits from their substitution evaluated. Finally, we conduct sensitivity analysis for expected technological improvements and factors that could decrease environmental performance.It is shown that substituting fossil technologies with SNG systems is environmentally beneficial with regard to global warming and for selected technologies also with regard to aggregated environmental impacts. On the condition that process heat is used efficiently, technological improvements such as increased efficiency and denitrification could further increase this advantage. On the other hand, lower GHG emissions and aggregated impacts are partly compensated by other environmental effects, e.g. eutrophication, ecotoxicity, and respiratory disease caused by inorganics. Since more efficient alternatives exist for the generation of heat and electricity from wood, it is argued that SNG is best used for transportation. In the light of a growing demand for renewable transportation fuels and commercial scale technological development being only in its initial stage, the production of SNG from wood seems to be a promising technology for the near future.  相似文献   

9.
Hydrogen (H2) can play a critical role in global greenhouse gas (GHG) mitigation. Photocatalytic water splitting using solar radiation is a promising H2 technology. Titanium dioxide (TiO2) and carbon nitride (g–C3N4)–based photocatalysts are the most widely used photocatalytic materials because of their activity and abundance. Several attempts have been made to improve the photocatalytic performance of these materials in terms of their activity level, life span, response to visible radiation, and stability. However, the environmental impacts of these modifications are often not included in existing studies. This research, therefore, develops a cradle-to-grave life cycle assessment (LCA) framework to evaluate and compare the GHG footprints of four alternative pathways: TiO2 nanorods and fluorine-doped carbon nitride quantum dots embedded with TiO2 (CNF: TNR/TiO2), g-C3N4, and g-C3N4/BiOI composite. Unlike most studies that focus only on certain stages such as laboratory-scale photocatalytic fabrication, this study includes utility-scale cell production, assembly, operation, and end of life to give a more accurate and precise environmental performance estimation. The results show that g-C3N4/BiOI has the lowest GHG footprint (0.38 kg CO2 eq per kg of H2) and CNF: TNR/TiO2 has the lowest energy payback time (0.4 years). In every pathway, energy use in material extraction processes makes up the largest GHG contribution, between 83% and 89%. Sensitivity and uncertainty analyses were conducted under the impact of various input parameters on the life cycle GHG emissions of hydrogen production. Photocatalytic water splitting is highly feasible for adaptation as a mainstream hydrogen production pathway in the future.  相似文献   

10.
Geothermal binary power plants that use low-temperature heat sources have gained increasing interest in the recent years due to political efforts to reduce greenhouse gas emissions and the consumption of finite energy resources. The construction of such plants requires large amounts of energy and material. Hence, the question arises if geothermal binary power plants are also environmentally promising from a cradle-to-grave point of view. In this context, a comprehensive Life Cycle Analysis (LCA) on geothermal power production from EGS (enhanced geothermal systems) low-temperature reservoirs is performed. The results of the analysis show that the environmental impacts are very much influenced by the geological conditions that can be obtained at a specific site. At sites with (above-) average geological conditions, geothermal binary power generation can significantly contribute to more sustainable power supply. At sites with less favorable conditions, only certain plant designs can make up for the energy and material input to lock up the geothermal reservoir by the provided energy. The main aspects of environmentally sound plants are enhancement of the reservoir productivity, reliable design of the deep wells and an efficient utilization of the geothermal fluid for net power and district heat production.  相似文献   

11.
Life cycle assessment of biohydrogen production in photosynthetic processes   总被引:1,自引:0,他引:1  
The outcomes of biohydrogen from photosynthesis processes are still small, however different development methods and laboratory studies are carried out to increase the production yield and meanwhile optimize the process to lessen the negative impact on the environment and climate change. The Life Cycle Assessment (LCA) gives the possibility to compare different biohydrogen production approaches using different photosynthesis methods and, at the same time, identify the environmental “hot spots” of the whole process.Inventory analysis and the results of different researchers in this field allow to find values of selected ecoindicators in order to evaluate the biohydrogen production efficiency with the selection of the best initial data for life cycle analysis. These ecoindicators weigh the resources needed for biohydrogen production whole system.This paper presents the first aspects for the implementation of a life cycle assessment.  相似文献   

12.
Life cycle assessment (LCA) of slow pyrolysis biochar systems (PBS) in the UK for small, medium and large scale process chains and ten feedstocks was performed, assessing carbon abatement and electricity production. Pyrolysis biochar systems appear to offer greater carbon abatement than other bioenergy systems. Carbon abatement of 0.7–1.3 t CO2 equivalent per oven dry tonne of feedstock processed was found. In terms of delivered energy, medium to large scale PBS abates 1.4–1.9 t CO2e/MWh, which compares to average carbon emissions of 0.05–0.30 t CO2e/MWh for other bioenergy systems. The largest contribution to PBS carbon abatement is from the feedstock carbon stabilised in biochar (40–50%), followed by the less certain indirect effects of biochar in the soil (25–40%)—mainly due to increase in soil organic carbon levels. Change in soil organic carbon levels was found to be a key sensitivity. Electricity production off-setting emissions from fossil fuels accounted for 10–25% of carbon abatement. The LCA suggests that provided 43% of the carbon in the biochar remains stable, PBS will out-perform direct combustion of biomass at 33% efficiency in terms of carbon abatement, even if there is no beneficial effect upon soil organic carbon levels from biochar application.  相似文献   

13.
This paper presents for the first time a Life Cycle Assessment (LCA) study of electricity generation in Mexico. The electricity mix in Mexico is dominated by fossil fuels, which contribute around 79% to the total primary energy; renewable energies contribute 16.5% (hydropower 13.5%, geothermal 3% and wind 0.02%) and the remaining 4.8% is from nuclear power. The LCA results show that 225 TWh of electricity generate about 129 million tonnes of CO2 eq. per year, of which the majority (87%) is due to the combustion of fossil fuels. The renewables and nuclear contribute only 1.1% to the total CO2 eq. Most of the other LCA impacts are also attributed to the fossil fuel options. The results have been compared with values reported for other countries with similar electricity mix, including Italy, Portugal and the UK, showing good agreement.  相似文献   

14.
Offshore wind power comprises a relatively new challenge for the international wind industry with a demonstration history of around twenty years and a ten-year commercial history for large, utility-scale projects. By comparison to other forms of electric power generation, offshore wind energy is generally considered to have relatively benign effects on the marine environment. However, offshore projects include platforms, turbines, cables, substations, grids, interconnection and shipping, dredging and associated construction activity. The Operation & Maintenance (O&M) activities include the transport of employees by vessel or helicopter and occasional hardware retrofits. Therefore, various impacts are incurred in the construction, operation and decommissioning phases; mainly the underwater noise and the impacts on the fauna. Based on the fact that in many of the aforementioned issues there are still serious environmental uncertainties, contradictive views and emerging research, the present work intents to provide a thorough literature review on the environmental and social impacts of offshore wind energy projects in comparison with the onshore counterparts.  相似文献   

15.
A life cycle assessment of hydrogen and gasoline vehicles, including fuel production and utilization in vehicles powered by fuel cells and internal combustion engines, is conducted to evaluate and compare their efficiencies and environmental impacts. Fossil fuel and renewable technologies are investigated, and the assessment is divided into various stages.  相似文献   

16.
In this study, the environmental load of photovoltaic power generation system (PV) during its life cycle and energy payback time (EPT) are evaluated by LCA scheme. Two hypothetical case studies in Toyohashi, Japan and Gobi dessert in China have been carried out to investigate the influence of installation location and PV type on environmental load and EPT. The environmental load and EPT of a high-concentration photovoltaic power generation system (hcpV) and a multi-crystalline silicon photovoltaic power generation system (mc-Si PV) are studied. The study shows for a PV of 100 MW size, the total impacts of the hcpV installed in Toyohashi is larger than that of the hcpV installed in Gobi desert by 5% without consideration of recycling stage. The EPT of the hcpV assumed to be installed in Gobi desert is shorter than EPT of the hcpV assumed to be installed in Toyohashi by 0.64 year. From these results, the superiority to install PV in Gobi desert is certificated. Comparing with hcpV and mc-Si PV, the ratio of the total impacts of mc-Si PV to that of hcpV is 0.34 without consideration of recycling stage. The EPT of hcpV is longer than EPT of mc-Si PV by 0.27 year. The amount of global solar radiation contributing to the amount of power generation of mc-Si PV is larger than the amount of direct solar radiation contributing to the amount of power generation of hcpV by about 188 kW h/(m2 year) in Gobi desert. Consequently, it appears that using mc-Si PV in Gobi desert is the best option.  相似文献   

17.
Decomposition of ammonia derived from source-separated human urine is a renewable approach for hydrogen production. Life cycle net energy analysis and global warming impact of scaled-up hydrogen production via this technique are studied in this paper. Ammonia decomposition processes, including fixed-bed reactors with Ru/Al2O3 and Ni/Al2O3 as catalyst options are simulated using the Aspen Plus software, and the results are compared with published data for validation. The life cycle net energy indicators are assessed for three scenarios of ammonia generation: conventional air stripping, microbial fuel cell, and electrochemical cell methods at a unit basis of 1000 kg of H2 production. Results show that the microbial fuel cell process is more energy-efficient and emits lower greenhouse gases. The net energy ratio of the microbial fuel cell method is 1.38, and 1.12, for Ru/Al2O3 and Ni/Al2O3, respectively. A comparative assessment of ammonia generation and decomposition options for environmentally-benign hydrogen production is discussed.  相似文献   

18.
Residential Fuel Cell micro combined heat and power (FC-μCHP) systems can help decarburizing the energy system. In the European ene.field project, the environmental performance of FC-μCHP under different conditions was therefore evaluated by means of a comprehensive Life Cycle Assessment (LCA). Important influential factors were explored, i.e. heating demands, full load hours (FLHs) and electricity replacement mixes (ERMs). The systems were compared with a stand-alone Gas Condensing Boiler (GCB) and a heat pump (HP, only in single family homes, SFHs). For the initially assumed FLHs and the current ENTSO-E ERM, relevant environmental impacts including climate change are generally smaller for the FC-μCHPs than for the HP and the stand-alone GCB. In the setting “existing SFHs in central climate” with the highest deployment potential, GHG emission savings are higher the more carbon-intensive the ERM is and/or higher the net electricity export into the grid is. The results are discussed and put into perspective. Further research demands as well as product development opportunities are outlined. The importance of a green hydrogen economy is emphasized.  相似文献   

19.
This paper presents the life cycle cost analysis of the single slope passive and hybrid photovoltaic (PV/T) active solar stills, based on the annual performance at 0.05 m water depth. Effects of various parameters, namely interest rate, life of the system and the maintenance cost have been taken into account. The comparative cost of distilled water produced from passive solar still (Rs. 0.70/kg) is found to be less than hybrid (PV/T) active solar still (Rs. 1.93/kg) for 30 years life time of the systems. The payback periods of the passive and hybrid (PV/T) active solar still are estimated to be in the range of 1.1–6.2 years and 3.3–23.9 years, respectively, based on selling price of distilled water in the range of Rs. 10/kg to Rs. 2/kg. The energy payback time (EPBT) has been estimated as 2.9 and 4.7 years, respectively.  相似文献   

20.
In this study, nuclear energy based hydrogen and ammonia production options ranging from thermochemical cycles to high-temperature electrolysis are comparatively evaluated by means of the life cycle assessment (LCA) tool. Ammonia is produced by extracting nitrogen from air and hydrogen from water and reacting them through nuclear energy. Since production of ammonia contributes about 1% of global greenhouse gas (GHG) emissions, new methods with reduced environmental impacts are under close investigation. The selected ammonia production systems are (i) three step nuclear Cu–Cl thermochemical cycle, (ii) four step nuclear Cu–Cl thermochemical cycle, (iii) five step nuclear Cu–Cl thermochemical cycle, (iv) nuclear energy based electrolysis, and (v) nuclear high temperature electrolysis. The electrolysis units for hydrogen production and a Haber–Bosch process for ammonia synthesis are utilized for the electrolysis-based options while hydrogen is produced thermochemically by means of the process heat available from the nuclear power plants for thermochemical based hydrogen production systems. The LCA results for the selected ammonia production methods show that the nuclear electrolysis based ammonia production method yields lower global warming and climate change impacts while the thermochemical based options yield higher abiotic depletion and acidification values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号