首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 665 毫秒
1.
Abstract

The influence of pulse impact on the microstructure and properties of welded joints of aluminium matrix composite SiCp/AlSi7Mg by liquid phase pulse impact diffusion welding (LPPIDW) and its welding mechanism had been studied. It showed that during LPPIDW, under the effect of pulse impact, the interface state between SiC particle and matrix was prominent, the initial pernicious contact state of reinforcement particles had been changed from reinforcement (SiC)/reinforcement (SiC) to reinforcement (SiC)/matrix/reinforcement (SiC), and the harmful microstructure or brittle phase was restrained from the welded joint. Moreover, the density of dislocation in the matrix neighbouring to and away from the interface was higher than that of its parent composite and the dislocation entwisted each other intensively. Furthermore, the deformation mainly occurred in the matrix grain and the matrices around SiC particles engendering intensive aberration offered a high density nucleus area for matrix crystal in favour of forming nanograins, which improved the properties of welded joints distinctly, resulting in welding the composite successfully. Consequently, the tensile strength of the welded joints was up to 179 MPa, which was ~74˙6% of the strength of SiCp/AlSi7Mg (as stir cast), and its corresponding radial deformation was less than 3%, suitable for the demand of deformation of welded specimens.  相似文献   

2.
以Ti-Si混合粉末作为填充材料,采用氮氩混合等离子气体对SiCp/Al基复合材料进行等离子弧原位焊接,分析SiCp/Al基复合材料的焊接性.结果表明,填充Ti-Si混合粉末进行等离子弧原位焊接时接头组织致密,结合较好,焊缝组织中生成了新的增强颗粒,未发现明显的针状相生成,从而有效地提高了接头的力学性能.力学性能试验表明,采用Ti-Si混合粉末进行等离子弧原位焊接所获得的抗拉强度为232.3MPa.此外探讨了焊接接头中气孔形成的机制以及应采取的相应措施.  相似文献   

3.
Direct metal laser sintering (DMLS) is an additive manufacturing technique for the production of parts with complex geometry and it is especially appropriate for structural applications in aircraft and automotive industries. Aluminum-based metal matrix composites (MMCs) are promising materials for these applications because they are lightweight, ductile, and have a good strength-to-weight ratio This paper presents an investigation of microstructure, hardness, and tribological properties of AlSi10Mg alloy and AlSi10Mg alloy/TiB2 composites prepared by DMLS. MMCs were realized with two different compositions: 10% wt. of microsize TiB2, 1% wt. of nanosize TiB2. Wear tests were performed using a pin-on-disk apparatus on the prepared samples. Performances of AlSi10Mg samples manufactured by DMLS were also compared with the results obtained on AlSi10Mg alloy samples made by casting. It was found that the composites displayed a lower coefficient of friction (COF), but in the case of microsize TiB2 reinforcement the wear rate was higher than with nanosize reinforcements and aluminum alloy without reinforcement. AlSi10Mg obtained by DMLS showed a higher COF than AlSi10Mg obtained by casting, but the wear rate was higher in the latter case.  相似文献   

4.
SiCp/2024 matrix composites reinforced with SiC particles and 2219 aluminum alloy were joined via centered electron beam welding and deflection beam welding, respectively, and the microstructures and mechanical properties of these joints were investigated. The results revealed that SiC particle segregation was more likely during centered electron beam welding (than during deflection beam welding), and strong interface reactions led to the formation of many Al4C3 brittle intermetallic compounds. Moreover, the tensile strength of the joints was 104 MPa. The interface reaction was restrained via deflection electron beam welding, and only a few Al4C3 intermetallic compounds formed at the top of the joint and heat affected zone of SiCp/Al. Quasi-cleavage fracture occurred at the interface reaction layer of the base metal. Both methods yielded a hardness transition zone near the SiCp/2024 fusion zone,and the brittle intermetallic Al4C3compounds formed in this zone resulted in high hardness.  相似文献   

5.
对SiCp/Al复合材料自身进行电子束焊接,研究了其接头成形、焊缝组织、热影响区组织及接头力学性能.结果表明,SiCp/Al复合材料自身直接电子束焊接时,接头的主要缺陷是焊缝成形差、易形成两侧堆积颗粒物的凹槽;焊缝组织中存在界面反应产生的灰白色初生硅、深灰色针状相Al4C3以及Al-Si共晶中的浅灰色针状共晶硅,形成脆性区,拉伸断裂位置便在此处,断裂为脆性断裂.熔合区附近硬度较高,与焊缝区组织及硬度差异较大.接头的最高强度为73 MPa,仅占母材平均抗拉强度的41%.  相似文献   

6.
Silicon carbide particulate (SiCp) reinforced cast aluminium (Al) based metal matrix composites (MMCs) have gained wide acceptance in the fabrication of light weight structures requiring high specific strength, high temperature capability and good wear resistance. Friction stir welding (FSW) process parameters play major role in deciding the performance of welded joints. The ultimate tensile strength, notch tensile strength and weld nugget hardness of friction stir butt welded joints of cast Al/SiCp MMCs (AA6061 with 20% (volume fraction) of SiCp) were investigated. The relationships between the FSW process parameters (rotational speed, welding speed and axial force) and the responses (ultimate tensile strength, notch tensile strength and weld nugget hardness) were established. The optimal welding parameters to maximize the mechanical properties were identified by using desirability approach. From this investigation, it is found that the joints fabricated with the tool rotational speed of 1370 r/min, welding speed of 88.9 mm/min, and axial force of 9.6 kN yield the maximum ultimate tensile strength, notch tensile strength and hardness of 265 MPa, 201 MPa and HV114, respectively.  相似文献   

7.
分别采用电子束对中焊、偏束焊技术,研究了Si C颗粒增强铝基复合材料Si Cp/2024与2219铝合金的接头组织及力学性能.结果表明,对中焊时接头易出现Si C增强相的偏聚,同时发生严重的界面反应,生成大量脆性相Al4C3,接头抗拉强度最高为104 MPa.采用偏束焊工艺可以很好地抑制界面反应,通常只在焊缝上部与Si Cp/Al热影响区上部生成少量脆性相Al4C3,接头抗拉强度最高可达131 MPa.试件均断裂在母材界面反应层上,且为明显的脆性断裂.不同工艺下接头横截面硬度分布存在突变区,该区域在Si Cp/2024熔合区附近,该处脆性相Al4C3的生成导致硬度升高.  相似文献   

8.
针对选区激光熔化成形AlSi10Mg铝合金焊接过程中氢气孔敏感性高的问题,采用固溶脱氢与真空固溶脱氢的方法对比了脱氢处理对合金激光焊接接头孔隙缺陷的影响,分析了不同状态下激光焊焊缝气孔分布、组织演变及力学行为。结果表明,固溶处理能够有效减少选区激光熔化成形AlSi10Mg铝合金激光焊焊缝气孔率,且真空固溶处理效果最好,气孔率从沉积态激光焊接焊缝的2.64%降到真空固溶态焊缝的0.14%;通过对接头组织的演变与基板物相形态、成分的变化分析阐述了孔隙出现的原因,揭示了真空热处理是解决由于基板中预先存在的较高含量的氢导致焊缝氢气孔形成的有效方法。固溶后母材硬度明显下降,各试板焊缝的平均硬度为80HV,较为一致;固溶态试板焊接接头抗拉强度为143MPa,低于沉积态接头,但延伸率增加到了24%,表现为韧性断裂特征。  相似文献   

9.
The effects of graphene nanoplates (GNPs) on the microstructures and mechanical properties of nanoparticles strengthening activating tungsten inert gas arc welding (NSA-TIG) welded AZ31 magnesium alloy joints were investigated. It was found that compared with those of activating TIG (A-TIG), and obvious refinement of α-Mg grains was achieved and the finest α-Mg grains of fusion zone of NSA-TIG joints were obtained in the welded joints with TiO2+GNPs flux coating. In addition, the penetrations of joints coated by TiO2+GNPs flux were similar to those coated by the TiO2+SiCp flux. However, the welded joints with TiO2+GNPs flux coating showed better mechanical properties (i.e., ultimate tensile strength and microhardness) than those with TiO2+SiCp flux coating. Moreover, the generation of necking only occurred in the welded joints with TiO2+GNPs flux.  相似文献   

10.
以304不锈钢为对象,借助横焊焊缝横断面图像来分析Nd:YAG激光+CMT电弧复合热源横焊焊缝横断面的成形特征,研究了Nd:YAG激光+CMT电弧复合热源横焊过程中焊接工艺参数对焊缝横断面形貌的影响.结果表明,在Nd:YAG激光+CMT电弧复合热源横焊中,焊接工艺参数对横焊焊缝横断面形貌的影响显著;Nd:YAG激光加入CMT电弧焊中明显提高了复合焊缝以及复合焊中CMT焊缝的熔深;采取适当的焊接工艺参数(小的光丝间距、大的激光功率、小的焊接速度、适合的离焦量以及小的或大的CMT功率)可以避免熔池机械式叠加和焊缝横断面错位现象,使得焊缝成形良好.  相似文献   

11.
In this work, SiCP and SiCP/SiO2 porous preforms were infiltrated without assistance in Ar→N2 atmosphere with the alloy Al-10.3 Mg-12.04 Si (wt.%) at 1050 and 1100 °C, for 20, 40 and 60 min. It was found that a decrease in residual porosity and an increase in elastic modulus by about 22 % with respect to composites produced without SiO2 additions to the preforms are associated with the formation of magnesium aluminate spinel (MgAl2O4). A concurrent increase of the matrix hardness is ascribed to a strengthening mechanism by MgAl2O4 formation, similar to the strengthening observed with Mg2Si in aluminum alloys. Therefore, the spinel can be considered as a co-reinforcement of SiCp in the aluminum matrix composites. Reactions for spinel formation and possible mechanisms for hardness enhancement are outlined.  相似文献   

12.
电弧超声对SiC_p/AlMMCs焊缝组织与性能的影响   总被引:1,自引:1,他引:0       下载免费PDF全文
以Ti合金作为填加材料,以氮氩混合气作为离子气,对SiCp/6061Al基复合材料进行电弧超声等离子弧原位合金化焊接,研究了电弧超声对等离子弧焊接头组织和性能的影响.结果表明,在不加超声时,焊缝中新生AlN相呈细长条状,Al3Ti相粗大,TiC,TiN等新生增强颗粒分布不均匀;在加入超声后,焊缝组织细密,TiC,TiN,AlN等增强相呈细小颗粒状存在,数量增加,且分布均匀,Al3Ti相尺寸减小,数量减少,从而有效改善了焊接接头的组织和性能,使焊接接头抗拉强度最大值达到225MPa,比不加超声时提高了约7%.  相似文献   

13.
Abstract

Lasers are capable of producing welds with deep penetration, low distortion and faster travel speeds, compared to arc welding. More recently, laser/arc hybrid welding processes have also been generating interest for industrial fabrication. In this paper, six carbon–manganese, mainly pipeline, steels were welded using both autogenous Nd:YAG laser welding, and Nd:YAG laser/MAG hybrid welding. The improvements in weld microstructures and weld metal toughness that are possible when using the hybrid process are described and illustrated. Laser/arc hybrid welding is shown to be a process that can generate good quality welds in commercially available pipeline steels. It also has the potential to complete girth welds in these steels with significantly fewer welding passes than are currently required for arc welded pipelines, reducing the joint completion time.  相似文献   

14.
Abstract

Federal regulations have recently been enacted to reduce significantly the atmospheric pollution caused by motor vehicles. This has compelled automotive manufacturers to improve the fuel efficiency of cars and light trucks by using lightweight materials such as aluminium. The focus of the present work is to develop welding procedures for autogenous CO2 (continuous mode) and Nd–YAG (continuous mode) laser beam welding of 5754–O aluminium alloy. The mechanical and microstructural characteristics of the welded joints were evaluated using tensile tests, microhardness tests, optical microscopy, and chemical analysis. Results indicate that this alloy can be autogenously laser welded with full penetration, minimum surface discontinuities, and little if any loss of magnesium through vaporisation from the fusion zone. The total elongation (all weld metal) in the longitudinal direction for 5754–O laser welds produced using 5 kW CO2 and 3 kW continuous wave (CW) Nd–YAG shows a slight decrease with increasing travel speed. Studies indicate that the decreasing tendency is probably due to the orientation of the grains with respect to the loading direction. The welds produced using the 5 kW CO2 laser at travel speeds between 127 and 212 mm s-1 displayed a total longitudinal elongation of 19.13–15.12% and those produced using the 3 kW CW Nd–YAG laser at travel speeds between 85 and 148 mm s-1 displayed a total longitudinal elongation of 22.6–18.15%, compared with the base metal value of 28.1%. An observation of great interest was that the weld surface condition did not have any effect on the ductility of the 5754–O aluminium alloy studied in the present investigation.  相似文献   

15.
Closed-cell AlSi9Mg foams and SiCp/AlSi9Mg composite foams with different SiCp volume fractions were prepared successfully by means of direct foaming of melt using CaCO3 blowing agent in this paper. The compressive behaviors of these foams were studied. In comparison with the compressive stress–strain curve of AlSi9Mg foams that of SiCp/AlSi9Mg composite foams is not smooth and exhibits some serrations. At the same relative density of composite foams, the yield stress and collapse stress of the composite foams increase with increasing SiCp volume fraction. The relationship of yield stress, relative density and SiCp volume fraction of SiCp/AlSi9Mg composite foams with a given particle size was obtained.  相似文献   

16.
对1.2mm厚镀锌钢板和1.15mm厚6016铝合金平板试件进行了加入中间夹层铅的激光搭接焊试验,通过调整焊接工艺参数获得最佳焊接成形,利用卧式金相显微镜、扫描电镜、x射线衍射、微机控制电子万能试验机等手段研究了焊接接头各区域的金相组织、断口形貌、主要物相与接头力学性能.结果表明,在钢/铝激光焊中添加中间夹层铅,焊接接...  相似文献   

17.
以填充自制药芯铝焊丝的形式向熔池内部直接添加Ti,Al,Si,Mg等金属元素,用氩氮混合等离子气体对SiCp/Al基复合材料进行等离子弧原位焊接.分析了Ti-Al-Si-Mg以及它们的氧化物对焊缝组织和性能的影响.结果表明,以Ti-Al-Si-Mg作为原位反应填充材料,可以有效抑制针状脆生相Al4C3的生成,改善熔池流...  相似文献   

18.
本研究采用Nd:YAG激光成功地对TiB晶须和La2O3颗粒混杂增强的原位钛基复合材料进行了焊接。利用金相观察、X-ray衍射、扫描电镜(SEM)和透射电镜(TEM)等测试方法,研究了激光焊接过程中TiB的演变行为,探讨了激光焊接头中的物相组成,TiB的分布及形貌特征,及TiB(或La2O3)和基体之间的界面关系。研究结果表明,TiB依然存在于焊接接头中,未发现有害物相的形成。在接头熔化区和靠近焊接热源的热影响区中,TiB尺寸显著细化,重新分布于b柱状晶晶界形成新颖的网络状结构。而在远离熔合线的热影响区中,由于受焊接热输入影响小,仅有少量TiB晶须通过B原子的强化扩散而改变了尺寸大小。而靠近母材的TiB未有变化,保持着和母材中TiB相似的形貌特征。进一步的TEM研究证明,增强体和基体之间的界面干净,仍保持良好的界面结合关系,未发现任何不良界面反应的发生,这也表明在激光焊接过程中,增强体和钛基体之间的界面结构是比较稳定的。  相似文献   

19.
研究了以Ni箔以及预置Si粉的Ni箔为中间层的铝/钢异种金属激光焊行为. 系统考察了不同激光功率下预置Si粉的Ni箔中间层对铝/钢异种金属激光焊接头组织与性能的影响. 结果表明,加入预置Si粉的Ni箔做复合中间层时,与只添加Ni箔片做中间层时相比,焊接接头的最大剪切力明显提高,其中激光功率为2 150 W时焊接接头的最大剪切力提高至1 307.96 N;Si粉的添加增加了熔池的流动性,并使得铝/钢界面的物相组成、元素分布和微观组织形态发生了改变;焊缝区生成了Fe-Si及Al-Si二元新相,有效抑制了Fe-Al二元脆性相的生成,改善了铝/钢的焊接性. 因此,预置Si粉的Ni箔复合中间层的加入,可以有效地改善铝/钢异种金属激光焊过程中的冶金反应,进而提高焊接接头的力学性能.  相似文献   

20.
铝合金脉冲激光焊Mg元素烧损行为及接头硬度分布   总被引:4,自引:2,他引:2       下载免费PDF全文
采用Nd:YAG脉冲激光对1mm厚5A05铝合金板进行焊接,结合激光焊物理过程,研究和分析了焊接工艺参数(脉冲能量、脉冲宽度、焊接速度和离焦量)对Mg元素烧损和焊缝熔深的影响,以及焊缝中Mg元素含量的变化和接头的硬度分布.结果表明,Mg元素烧损受熔池搅拌作用的影响,随搅拌作用增强和焊缝熔深的增加,焊缝中Mg元素烧损率减小;受Mg元素含量和冷却速度影响,焊接接头硬度在熔合线附近具有最大值,在焊缝中从表面到熔池底部硬度先减小再增大.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号