首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT: Effect of temperature and salt substitution on casein degradation of Fynbo cheese was studied. Fynbo cheeses, salted in solutions of 190 g NaCl/L and of 100 g NaCl/L and 100 g KCl/L and ripened at 5, 12, and 16 °C, were sampled at 1, 5, 10, 20, 30, 60, and 90 d of ripening, at central and external zones. Samples were analyzed for moisture and chloride contents, maturation index, and casein degradation by urea‐polyacrylamide gel electrophoresis. NaCl replacement by KCl did not affect any of the parameters studied. Total salt concentration and ripening temperature affected proteolysis significantly. First‐order kinetics constants for αs1‐casein degradation were in the range of 0.002 to 0.016 day‐1 and the activation energy of the reaction was approximately 26 kcal/gmol.  相似文献   

2.
ABSTRACT: The proteolysis of β-casein during ripening of low-fat Fynbo cheese was studied using 1st-order kinetics to improve the knowledge of the p-casein hydrolysis in Fynbo cheeses salted with NaCl or NaCl/KCl and ripened at different temperatures. Effects of ripening temperature, partial replacement of NaCl by KCl during cheese salting, and total salt concentration were evaluated. Central and external zones from cheeses at 1, 5, 10, 20, 30, 60, and 90 ripening days were analyzed by polyacrylamide gel electrophoresis. No significant differences in the kinetic parameters were observed between cheeses salted with NaCl and those salted with a NaCl/KCl brine. Kinetic constants were significantly affected by region within cheese and ripening temperature. Kinetic constant values were in the range of 0.004/d to 0.018/d, and the activation energy of the reaction was approximately 19 kcal/gmol.  相似文献   

3.
São João cheeses with varying curd dry salting treatments were made with decreasing levels of salt (sodium chloride): 4 (control), 3, 2 and 1% (w/w), along with the salt‐free version. The cheeses were ripened at 11 °C over a 40‐day period, and the effect of lowering salt on the physicochemical, microbiological and sensory properties of the cheese was studied. Reduced salt resulted in a concomitant moisture decrease with protein increase, ash and sodium reduction among experimental cheeses at the same ripening day, but there were no significant differences in pH, acidity and fat, or in the microbiological quality. Triangle tests indicated perceptible differences between test and control cheeses at the level of 2% NaCl (w/w) or less, but not with the cheese salted with 3 g NaCl/100 g. Considering the sensory, the physicochemical and the microbiological results, the cheese formulated at 3% NaCl (w/w) (presenting a reduction of 25% in salt) is feasible on an industrial scale, being indistinguishable by the regular consumer.  相似文献   

4.
BACKGROUND: In this work the proteolysis profiles of Argentinean sheep cheeses made by two different production methods were studied in order to develop products with typical and defined features. Cheeses with a starter of Streptococcus thermophilus, curd cut to corn grain size, washed and heated to 43 °C (S cheeses) and cheeses with a mixed starter of Streptococcus thermophilus, Lactobacillus helveticus and Lactobacillus bulgaricus, curd cut to rice grain size, unwashed and heated to 47 °C (L cheeses) were manufactured. The cheeses were ripened at 12 °C and 80% relative humidity for 180 days and samples were taken throughout this period. RESULTS: Gross composition and primary proteolysis were similar for both types of cheeses. Streptococci counts diminished from 109 to 107 colony‐forming units g?1 during ripening in both S and L cheeses. Lactobacilli counts in L cheeses decreased during ripening and disappeared at 180 days. L cheeses had significantly lower pH values and showed higher peptidolysis than S cheeses. Triangle sensory evaluation indicated important differences between the two types of cheeses. CONCLUSION: S cheeses had a low proteolysis level and a soft flavour, making them appropriate for consumption after a short ripening time. L cheeses had a higher proteolysis level and more intense sensory characteristics, making them appropriate for consumption after a longer ripening time. Copyright © 2009 Society of Chemical Industry  相似文献   

5.
ABSTRACT:  The influence of adjunct bacteria on composition of cheeses, organic acid profiles, proteolysis, and ACE-inhibitory activity during ripening at 4, 8, and 12 °C for 24 wk was investigated. cheddar cheeses were made with starter lactococci (control), Lactobacillus acidophilus L10, and starter lactococci (L10), and L. acidophilus L10, L. helveticus H100, and starter lactococci (H100). The counts of L. acidophilus in L10 cheeses remained at >106 colony forming units (CFU)/g after 24 wk of ripening at 4, 8, and 12 °C. Concentrations of lactic, acetic, and propionic acids of the L10 and H100 cheeses were significantly higher than those of the control cheeses after 24 wk of ripening ( P < 0.05). Proteolysis of the cheeses was improved as the ripening temperature increased. Water-soluble nitrogen, trichloroacetic acid soluble nitrogen, and phosphotungstic acid soluble nitrogen of L10 and H100 cheeses were significantly higher than those of the control cheeses ( P < 0.05). Increase in ripening temperature from 4 °C to 8 and 12 °C increased the percentage of ACE inhibition. The IC50 value among cheeses ripened at 4, 8, and 12 °C, however, was not significantly different ( P > 0.05). Hence, probiotic L. acidophilus L10 can be added into cheddar cheeses to improve proteolysis and ACE-inhibitory activity.  相似文献   

6.
Cheddar cheese was produced with different lactobacilli strains added to accelerate ripening. The concentration of proteolytic products was determined as free amino acids in the water-soluble fraction at two, four, seven and nine months of aging and at two different maturation temperatures (6°C, 15°C). All amino acids increased during ripening and were higher in the Lactobacillus- added cheeses than in the control cheese, and higher in cheeses ripened at 15°C than at 6°C. Glutamic acid, leucine, phenylalanine, valine and lysine were generally in higher proportion in all cheeses. The cheeses with added L. casei-casei L2A were classified as having a “strong Cheddar cheese” flavor after only seven months of ripening at 6°C.  相似文献   

7.
The effect of substitution of NaCl with Potassium chloride (KCl) in brine solution on proteolysis of halloumi cheese was investigated. Halloumi cheeses were made and kept in 4 different brine solutions (18% w/w), including only NaCl (HA; control); 3NaCl:1KCl (w/w) (HB); 1NaCl:1KCl (w/w) (HC); 1NaCl:3KCl (w/w) (HD); and stored for 56 d at 4 °C. Proteolysis was assessed using water-soluble nitrogen (WSN), trichloroacetic acid-soluble nitrogen (TCA-SN), phosphotungstic-soluble nitrogen (PTA-SN), urea polyacrylamide gel electrophoresis (urea-PAGE), and peptide patterns. WSN and TCA-SN contents were similar in all experimental cheeses. Peptide patterns of the pH 4.6 N fraction and urea-PAGE showed no significant difference between halloumi cheeses kept in various NaCl/KCl mixtures (HB, HC, HD) and control (HA). Sodium and potassium contents showed positive correlations with WSN and PTA-SN. There was an inverse correlation between calcium (Ca) contents and WSN and PTA-SN. Correlations between Ca and Na or K were negative at the same salt treatment.  相似文献   

8.
《Journal of dairy science》2019,102(6):5713-5725
To produce a wide variety of cheeses, it is necessary to control the ripening process. To do that, artisanal goat cheeses were ripened to evaluate the effects of temperature (10 and 14°C) and relative humidity (RH; 88 and 98%) on (1) 16 physicochemical characteristics throughout ripening and (2) 19 sensory characteristics at the end of ripening (d 12). Whatever the ripening time, the physicochemical characteristics were strongly dependent on the daily productions, which affected the sensory perception of the cheeses. Both physicochemical and sensory characteristics were strongly reliant on RH, whereas only a few of the characteristics were influenced by temperature changes. On d 12, whatever the ripening temperature, an RH increase from 88% to 98% modified many cheese characteristics (core pH, lactate consumption, underrind thickening, dry matter content, and hardness). As a result of these physicochemical properties, changes in perception were observed: the cheeses ripened under 88% RH were dry and hard compared with those ripened under 98% RH. An RH of 98% led to an acceleration of the ripening process, inducing a slightly ammonia and milky flavor and a sticky and creamy texture in the mouth. However, cheeses ripened under 14°C and 98% RH were also indicative of overripened cheeses: a temperature of 14°C induced an acceleration of the ripening process due to physicochemical modifications compared with a temperature of 10°C. Nevertheless, when the cheeses on d 0 were still very humid and soft, those ripened under 98% RH collapsed and were overripened with a liquid underrind. This study provides a means for achieving a better and more rational control of the ripening process in artisanal lactic goat cheeses.  相似文献   

9.
Commercial food grade enzymes (Neutrase, calf lipase and NaturAge) were incorporated into cheese at various concentrations and ripened at 7° and 13°C. Gas chromatographic analysis indicated that free fatty acid (FFA) production increased significantly (p<0.05) with lipase and high level NaturAge. Neutrase had little effect on FFA production but showed synergistic effects with lipase. The short-chain FFA profiles were similar among control, Neutrase- and NaturAge-treated cheeses. Significant correlations (p<0.05) between C8 and C14, C16 or C18:1 and total free fatty acids were observed in all tested samples. Total concentrations of C4 and C6 may be a good indicator of flavor development during cheese ripening. Cheese with a medium level of NaturAge, ripened at 13°C for 4 wk, showed profiles of FFA similar to those of the control cheese ripened at 7°C for 12 wk.  相似文献   

10.
Accelerated ripening of Cheddar cheese at elevated temperatures   总被引:1,自引:0,他引:1  
Blocks (20 kg) of Cheddar cheese from a single vat were obtained from a local factory. Half the cheeses were cooled rapidly (15 h) to ripening temperature (8, 12 or 16 °C) and half were cooled slowly over 8 days to the same ripening temperatures. Cheeses were ripened for 9 months at 7 different time/temperature combinations. Ripening temperature had little influence on the number of non-starter lactic acid bacteria in the cheeses after 9 months, although rapid cooling to and ripening at 8 °C drastically reduced the growth rate of these adventitious bacteria. Proteolysis (as determined by urea-polyacrylamide gel electrophoresis; increases in water-soluble N; increases in phosphotungstic acid-soluble N; Cd ninhydrin-reactive amino groups; and reverse-phase HPLC) and lipolysis were accelerated by increasing the ripening temperature and by slow cooling of the cheeses. The rate of ripening was increased or decreased by changing the temperature. Cheeses ripened at 16 °C generally received the highest flavour scores, particularly early during ripening. However, the texture of these cheeses deteriorated after prolonged ripening at 16 °C. Maturation at 12 °C was considered to be optimal for the commercial acceleration of Cheddar cheese ripening.  相似文献   

11.
Effects of temperature and salt substitution on secondary proteolysis of Fynbo cheese were studied and different peaks of the chromatographic profiles were examined. Cheeses, salted in solutions of NaCl (190 g l−1) and NaCl/KCl (100 g l−1/100 g l−1) and ripened at 5, 12, and 16 °C, were sampled during 90 days at two different zones. Samples were analysed by RP-HPLC of the trichloroacetic acid-soluble fraction. The information was successfully summarized in 2 dimensions, accounting for 86.5% of data variation using principal component analysis. The source of variation explained by PC1 (77.1% VAR) was related to the ripening time. Two groups of chromatographic peaks were distinguished according to the sign of PC2 loading. Total salt concentration and ripening temperature affected secondary proteolysis significantly, while NaCl replacement by KCl had no affect. An important peptide produced during cheese ripening (αs1-casein (f1-23)) was tentatively identified, taking into account the chromatographic profile and the amino acid composition of the peak isolated.  相似文献   

12.
Fynbo Cheese NaCl and KCl Changes during Ripening   总被引:2,自引:0,他引:2  
In a model study we assumed that the cheese is a homogeneous solid with nonuniform initial concentration distributions, cheese surfaces are rendered impermeable after brining, and the generalized Fick's law form is valid for expressing the diffusive fluxes of solutes. NaCl and KCl concentrations at selected positions during distribution in Fynbo cheese kept at 12°C, after salting 10 hr in a brine of 100 g NaCl/L and 100 g KCl/L at the same temperature, were determined experimentally and compared with predicted values with the model at different storage times up to 30 days. Homogeneous distribution of solutes was reached at 20 days ripening, as predicted by the model and verified experimentally.  相似文献   

13.
Sufu, a fermented soybean curd, was prepared by ripening the salted tofu cubes in the Aspergillus oryzae‐fermented rice–soybean koji mash at 25, 35 or 45 °C for a period of 16 days. It showed that the 16‐day ripened sufu contains less total isoflavone content (629.29–739.68 μg g?1 dried matter) than the salted tofu before ripening (942.59 μg g?1 dried matter). Regardless of ripening temperature, ripening causes a major reduction in the content of β‐glucoside and malonylglucoside isoflavones along with a significant increase of aglycone isoflavone content. These changes were enhanced as the ripening period extended. Among the various treatments examined, sufu ripened at 45 °C showed the greatest increase in aglycone content coupled with the greatest decrease in malonylglucosides. The distribution of malonylglucosides decreased from an initial 40.32% in the tofu cube to 9.78% after 16 days of ripening at 45 °C. Meanwhile, the distribution of aglycone increased from 13.17% to 39.88%.  相似文献   

14.
Mackerel fillets were salted with NaCl and/or KCl to determine the most acceptable level by sensory evaluation. Additionally, the effects of ascorbic acid, vacuum packaging, and cold storages on lipid oxidation were determined for the salted mackerel fillets. Appropriate level of NaCl was ≤2%. Fifty percent replacement of NaCl by KCl reduced NaCl level with minimal impact on sensory quality. The higher the level of ascorbic acid (0–0.5%, weight basis), the higher the antioxidant effect observed with thiobarbituric acid value and peroxide value. There was no significant difference in sourness (α = 0.05) between the salted mackerel samples treated with and without ascorbic acid (0.25%). Vacuum packaging and storage at ?18 °C along with ascorbic acid was most effective in retarding lipid oxidation in the salted mackerel. Vacuum‐packaged sample with ascorbic acid stored at 2 °C was least oxidised, followed by vacuum packaging without ascorbic acid and then ascorbic acid without vacuum.  相似文献   

15.
Tulum cheeses were manufactured from raw ewe's milk and ripened in goat's skin bags (tulums) or plastic containers to understand the effect of ripening container on the chemical composition, biochemistry, microbiology, and volatile composition of Tulum cheeses during 150 d of ripening. Chemical compositions of the cheeses ripened in tulums were significantly different and the moisture contents decreased rapidly in those cheeses because of the porous structure of the tulum. Higher microbial counts were detected in the cheeses ripened in plastic than in cheeses ripened in tulums. Differences in nitrogenous compounds and total free AA of the cheeses were not significant. Total concentrations of free AA in cheeses increased with age and Glu, Ala, Val, Leu, and Phe were the most abundant AA in the cheeses. Urea-PAGE of pH 4.6-insoluble fractions of the cheeses during ripening showed similar degradation patterns in all cheeses. Peptide profiles by reversed-phase HPLC of pH 4.6- and ethanol-soluble or ethanol-insoluble fractions of the cheeses revealed only minor differences in the concentrations of some peptides among the cheeses; however, age-related changes in peptide concentrations were significantly different among the cheeses. Cheeses were analyzed at 90 d of ripening for volatile compounds by solid-phase microextraction gas chromatography-mass spectrometry. One hundred volatile components were identified, including 11 acids, 16 esters, 12 methyl ketones, 7 aldehydes, 22 alcohols, 7 sulfur compounds, 6 terpenes, and 19 miscellaneous compounds. The main components were short-chain fatty acids, 2-butanone, diacetyl, and primary alcohols. Quantitative differences in several volatile compounds were evident among the cheeses. Cheeses ripened in tulums or plastic had similar aroma patterns, but the concentrations of some components were different.  相似文献   

16.
《Food chemistry》2001,73(1):31-43
Kefalograviera cheeses (five trials) of different sodium content were made from split lots of curd by varying the salting processes, i.e. brine — and dry — salting, with NaCl (control) or a mixture of NaCl/KCl (3:1 or 1:1, w/w basis). The extent and characteristics of proteolysis in the cheeses were monitored during aging by Kjeldahl determination of soluble nitrogen fractions (water-soluble nitrogen [WSN], trichloroacetic acid [TCA]-SN, phosphotungstic acid [PTA]-SN), the cadmium-ninhydrin method for the determination of total free amino acids (FAA), urea-polyacrylamide gel electrophoresis of cheese proteins, followed by densitometric analysis of the αs1- and β-casein fractions, reverse-phase high-performance liquid chromatography (HPLC) analysis of the water-soluble extracts of cheeses, and ion-exchange HPLC analysis of FAA. The results showed that proteolysis was similar in control and experimental cheeses at all sampling ages, indicating that the partial substitution of NaCl by KCl in the manufacture of Kefalograviera cheese did not significantly influence the extent and characteristics of proteolysis during cheese aging.  相似文献   

17.
The study aimed to assess the impact of ripening at elevated temperatures on the survival of probiotic micro‐organisms and production of organic acids in Cheddar cheese. Cheese was manufactured from buffalo milk using lactococci starters along with different probiotic bacteria (Lactobacillus acidophilus LA‐5, Bifidobacterium bifidum Bb‐11 and Bifidobacterium longum BB536) as adjunct cultures. The cheeses were ripened at 4–6 °C or 12–14 °C for 180 days and examined for composition, organic acids and microbial survival. The production of organic acids was accelerated at 12–14 °C when compared to normal ripening temperatures. The probiotic bacteria increased production of lactic and acetic acids, compared to cheese made with lactococci alone. The survival of the mesophilic starters was significantly (P < 0.05) reduced in all the cheese samples ripened at the higher temperature. However, the probiotic bacteria remained viable (>7.0 log10 cfu/g) throughout the 180 days of ripening, irrespective of temperature. It was concluded that Cheddar containing additional probiotic cultures can effectively be ripened at elevated temperatures without any adverse effects.  相似文献   

18.
Two cheese-making trials were conducted, each involving four cheeses, two made from raw milk (R1, R8) and two from pasteurised milk (P1, P8), and ripened at 1°C (R1, P1) or 8°C (R8, P8). The 1-day-old R1 and R8 cheese in trials 1 and 2 contained ∼104 non-starter lactic acid bacteria (NSLAB) g−1. In trial 1, no NSLAB were detected in 1-day-old P1 and P8 cheeses while those in trial 2 contained 102 cfu g−1. In both trials, the maximum differences between the number of NSLAB in the cheeses ripened at 1 or 8°C were observed at 4 months, when the number of NSLAB in cheeses ripened at 8°C were 3 log cycles higher than in those ripened at 1°C. At the end of ripening (6-months), the number of NSLAB in P8 and R8 were ∼2 log cycles higher than in P1 and R1 cheeses, respectively. Primary proteolysis in the cheeses was markedly affected by ripening temperature, but not by pasteurisation of the cheese milk. Urea-polyacyrlamide gel electrophoretograms and reverse-phase (RP)-HPLC of the water-soluble fraction showed differences between cheeses made from raw or pasteurised milk and between cheeses ripened at 1 or 8°C. The concentration of amino acids and fatty acids were in the order R8>P8>R1>P1. Commercial graders awarded highest flavour scores to the R1 cheeses during gradings at 4, 5 and 6 months. A sensory panel found that most flavour and aroma attributes and maturity were in the order of R8>P8>R1=P1. The results of this study suggest that NSLAB play an important role in the development of flavour in Cheddar cheese by contributing to the production of amino acids and fatty acids.  相似文献   

19.
The effect of varying cook temperature (40 or 50 °C) and salting method (dry or brine salting) on bacterial viability, enzymatic activity and chemical composition in cheeses made using Streptococcus thermophilus and Lactobacillus helveticus were investigated. Dry salting resulted in decreased cell viability of L. helveticus, increased lactate dehydrogenase activity and increased free amino acid levels, compared with brine salted cheeses, irrespective of cook temperature. A cook temperature of 50 °C resulted in reduced primary proteolysis and increased pH in comparison with that in cheeses cooked to 40 °C. Salting method influenced moisture content with higher levels in brine salted cheeses; cook temperature was also influential with higher cook temperature resulting in lower moisture within each salting method. Variations in manufacture procedure can allow for the development of cheese varieties with novel flavour and texture profiles using existing Cheddar or Swiss-style manufacturing facilities.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号