首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To protect the carbon/carbon (C/C) composites from oxidation, an outer ultra‐high‐temperature ceramics (UHTCs) HfB2‐SiC coating was prepared on SiC‐coated C/C composites by in situ reaction method. The outer HfB2‐SiC coating consists of HfB2 and SiC, which are synchronously obtained. During the heat treatment process, the formed fluid silicon melt is responsible for the preparation of the outer HfB2‐SiC coating. The HfB2‐SiC/SiC coating could protect the C/C from oxidation for 265 h with only 0.41 × 10?2 g/cm2 weight loss at 1773 K in air. During the oxidation process, SiO2 glass and HfO2 are generated. SiO2 glass has a self‐sealing ability, which can cover the defects in the coating, thus blocking the penetration of oxygen and providing an effective protection for the C/C substrate. In addition, SiO2 glass can react with the formed HfO2, thus forming the HfSiO4 phase. Owing to the “pinning effect” of HfSiO4 phase, crack deflecting and crack termination are occurred, which will prevent the spread of cracks and effectively improve the oxidation resistance of the coating.  相似文献   

2.
This paper discusses the development of continuous SiC fiber‐reinforced HfB2‐SiC composite laminates. A range of techniques, based on resin‐based precursors and slurries, for infiltrating porous SiC preforms with HfB2 powder were developed. While resin‐based precursors proved to be ineffective due to low HfB2 yield and poor adhesion, the slurry infiltration techniques were effective to varying degrees. The greatest pore filling and composite densities were achieved using pressure and vibration‐assisted pressure infiltration techniques. SiCf/HfB2‐SiC laminates were subsequently developed via lamination, cure and pyrolysis of fabrics using a HfB2‐loaded polymeric SiC precursor, followed by HfB2 slurry infiltration and preceramic polymer infiltration and pyrolysis (PIP). Repeated PIP processing, for 6–10 cycles, resulted in density increases, from the 3.03–3.22 g/cm3 range after HfB2 slurry infiltration, to 3.97–4.03 g/cm3 after PIP processing. Correspondingly, there was a decrease in open porosity from approximately 52% to less than 11%. The matrix consisted of discreet, lightly sintered HfB2 particles dispersed in SiC. The PIP SiC matrix was primarily nanocrystalline after 1300°C pyrolysis, but experienced grain growth with further heat treatment at 1600°C.  相似文献   

3.
The gradient HfB2 modified SiC coating was prepared on the surface of SiC-coated C/C composites by in-situ synthesis. Anti-oxidation behaviors of the coated C/C samples at 1773, 1873 and 1973?K were investigated. The results show that the gradient HfB2 modified SiC coatings possess excellent oxidation resistance, which can protect C/C substrates from oxidation for 800, 305 and 100?h at 1773, 1873 and 1973?K, respectively. In addition, with the oxidation temperature increasing, the evaporation of the Hf-Si-O glass layer and the active oxidation of SiC were accelerated, which is the reason for the worst oxidation resistance of the sample at 1973?K among the three temperatures.  相似文献   

4.
To improve the oxidation resistance and alleviate the thermal stress of the HfB2-SiC-Si/SiC coatings for C/C composites, in-situ formed SiC whiskers (SiCw) were introduced into the HfB2-SiC-Si/SiC coatings via chemical vapor deposition (CVD). Effects of SiCw on isothermal oxidation and thermal shock resistance for the HfB2-SiC-Si/SiC coatings were investigated. Results showed that the SiCw-HfB2-SiC-Si/SiC coatings exhibited excellent oxidation resistance for C/C composites with only 0.88% weight loss after oxidation for 468?h at 1500?°C, which was markedly superior to 4.86% weight loss for coatings without SiCw. Meanwhile, after 50 times thermal cycling, the weight loss of the SiCw-HfB2-SiC-Si/SiC coated samples was 4.48%, which showed an obvious decrease compared with that of the HfB2-SiC-Si/SiC coated samples. The SiCw-HfB2-SiC-Si/SiC coatings exhibited excellent adhesion to the C/C substrate and had no penetrating cracks after oxidation. The improved performance of the SiCw-HfB2-SiC-Si/SiC coatings could be ascribed to the SiCw, which effectively relieved CTE mismatch and remarkably suppressed the cracks through toughening mechanisms including whiskers pull-out and bridging strengthening. The above results were confirmed by thermal analysis based on the finite element method, which demonstrated that SiCw could effectively alleviate thermal stress generated by temperature variation. Furthermore, the SiCw-HfB2-SiC-Si/SiC coating can provide a promising fail-safe mechanism during the high temperature oxidation by the formation of HfSiO4 and SiO2, which can deflect cracks and heal imperfections.  相似文献   

5.
This study is focused on the effect of the sintering additive on the microstructure and properties of HfB2 composites reinforced with SiC Hi–Nicalon fibers. The materials were spark plasma sintered with addition of 5–10 vol% of Si3N4 or ZrSi2. The fibers morphology was examined using scanning and transmission electron microscopy and remarkable differences were observed depending on the additive. Local hardness and Young's modulus were measured by nanoindentation to investigate the fiber mechanical behavior. The introduction of 20 vol% SiC short fibers into the HfB2 matrix increased the fracture toughness up to 5.4 MPa m1/2 for the material sintered with ZrSi2. The room temperature flexural strength of the materials containing fibers slightly decreased when ZrSi2 was used, but with the addition of Si3N4 an improvement of more than the 40%, as compared to the unreinforced material was observed.  相似文献   

6.
To improve the anti-oxidation and ablation properties of carbon/carbon (C/C) composites, they are modified by hafnium boride (HfB2) using a two-step process of in situ reaction and thermal gradient chemical vapor infiltration. X-ray diffraction is used to monitor the composition of the samples. Scanning electron microscope images show that the carbon fibers are uniformly coated by HfB2 particles. The oxidation onset temperature of carbon fibers is greatly increased from 300 to 700 °C after HfB2 coating. After modification with HfB2, the linear and mass ablation rates of the C/C composites are decreased by 51.80% and 24.32%. During oxidation and ablation, the interface between carbon matrix and fiber is effectively protected by HfB2 due to the reaction of HfB2 with the oxygen, and the resultant hafnium oxide may form the liquid film to resist the oxygen at high temperature.  相似文献   

7.
《Ceramics International》2017,43(17):15053-15059
Monolithic HfB2, HfB2-30 vol% SiC and HfB2-10 vol% MoSi2 composites were prepared by SPS and oxidized in stagnant air at 1500 °C for 70 min. The microstructure of the oxide layer cross-sections showed that the oxidation extents were as follow: monolithic HfB2 > HfB2-30 vol%SiC > HfB2-10 vol% MoSi2.According to the EDS Line-scan, only one porous oxide layer containing a minor amount of B2O3was found on the HfB2 oxidized surface whereas a thick silicate glass layer and a porous oxide layer below that existed on the surface of HfB2-30 vol% SiC. After oxidation, the surface of HfB2-10 vol% MoSi2 had a narrow silicate-oxide compact layer covered by a very thin glass layer. X-ray diffraction patterns of the oxidized surfaces showed the monolithic HfB2,the HfB2-30 vol% SiC and HfB2-10 vol% MoSi2composites contain, upon oxidation, only m-HfO2 phase, mainly m-HfO2 with a minor amount of HfSiO4 and mainly HfSiO4 with a minor amount of m-HfO2 phases, respectively. Based on the observations in this study, it is suggested that the elimination of the porous layer and subsequent increase of the HfSiO4 phase are the main reasons for the better oxidation resistance of HfB2-10 vol% MoSi2.  相似文献   

8.
《Ceramics International》2017,43(15):12005-12012
To improve the ablation resistance of SiC coating, HfB2-SiC coating was prepared on SiC-coated carbon/carbon (C/C) composites by in-situ reaction method. Owing to the penetration of coating powders, there is no clear boundary between SiC coating and HfB2-SiC coating. After oxyacetylene ablation for 60 s at heat flux of 2400 kW/m2, the mass ablation rate and linear ablation rate of the coated C/C composites were only 0.147 mg/s and 0.267 µm/s, reduced by 21.8% and 60.0%, respectively, compared with SiC coated C/C composites. The good ablation resistance was attributed to the formation of multiple Hf-Si-O glassy layer including SiO2, HfO2 and HfSiO4.  相似文献   

9.
Boron was introduced into Cf/SiC composites as active filler to shorten the processing time of PIP process and improve the oxidation resistance of composites. When heat-treated at 1800 °C in N2 for 1 h, the density of composites with boron (Cf/SiC-BN) increased from 1.71 to 1.78 g/cm3, while that of composites without boron (Cf/SiC) decreased from 1.92 to 1.77 g/cm3. So when boron was used, two cycles of polymer impregnation and pyrolysis (PIP) could be reduced. Meanwhile, the oxidation resistance of composites was greatly improved with the incorporation of boron-bearing species. Most carbon fiber reinforcements in Cf/SiC composite were burnt off when they were oxidized at 800 °C for 10 h. By contrast, only a small amount of carbon fibers in Cf/SiC-BN composite were burnt off. Weight losses for Cf/SiC composite and Cf/SiC-BN composite were about 36 and 16 wt%, respectively.  相似文献   

10.
Using WC as sintering aid, nearly full dense (~99%) HfB2–20 vol% SiC ceramics were sintered at 2200 °C for 2 h without external pressure. The densification mechanism, microstructure evolution, mechanical properties and oxidation resistance were investigated. The results indicated that complex chemical reactions of WC in HfB2–SiC system strongly related to the densification, microstructure and properties. The Young's modulus, fracture toughness and 3-pt bending strength of HfB2–20 vol% SiC with 10 wt% WC were 511 GPa, 4.85 Mpa m1/2 and 563 MPa, respectively, which were comparable to some hot pressed HfB2–SiC ceramics in literature. The oxidation of HfB2–20 vol% SiC with 10 wt% WC at 1500 °C in air exhibited parabolic kinetics. After oxidation at 1500 °C for 10 h, its weight gain and SiC-depleted layer thickness were 3.7 mg/cm2 and 43 μm, respectively, and its residual flexural strength was comparable to or even a little higher than the value before oxidation.  相似文献   

11.
HfC-HfB2-SiC composites were prepared by arc melting using HfC, HfB2 and SiC powder as raw materials. The ternary eutectic composition of 16HfC-17HfB2-67SiC (mol%) was first identified, showing a complicated maze microstructure of HfC, HfB2 and SiC approximately 500 nm in thickness. The eutectic temperature of the HfC-HfB2-SiC composite was nearly 2760 K. The Vickers hardness and fracture toughness of the HfC-HfB2-SiC ternary eutectic composite were 20.8 GPa and 7.7 MPa m1/2, respectively. With increasing temperature from 300 to 800 K, the electrical conductivity decreased from 8.8 × 105 to 4.3 × 105 Sm−1, whereas the thermal conductivity increased from 28 to 32 W m−1 K−1.  相似文献   

12.
《Ceramics International》2017,43(13):9934-9940
Continuous silicon carbide fiber–reinforced silicon carbide matrix (SiCf/SiC) composites have developed into a promising candidate for structural materials for high–temperature applications in aerospace engine systems. This is due to their advantageous properties, such as low density, high hardness and strength, and excellent high temperature and oxidation resistance. In this study, SiCf/SiC composites were fabricated via polymer infiltration and pyrolysis (PIP) with the lower–oxygen–content KD–II SiC fiber as the reinforcement; a mixture of 2,4,6,8–tetravinyl–2,4,6,8–tetramethylcyclotetrasiloxane (V4) and liquid polycarbosilane (LPCS), known as LPVCS, was used as the precursor; while pyrolytic carbon (PyC) was used as the interface. The effects of oxidation treatment at different temperatures on morphology, structure, composition, and mechanical properties of the KD–II SiC fibers, SiC matrix from LPVCS precursor conversion, and SiCf/SiC composites were comprehensively investigated. The results revealed that the oxidation treatment greatly impacted the mechanical properties of the SiC fiber, thereby significantly influencing the mechanical properties of the SiCf/SiC composite. After oxidation at 1300 °C for 1 h, the strength retention rates of the fiber and composite were 41% and 49%, respectively. In terms of the phase structure, oxidation treatment had little effect on the SiC fiber, while greatly influencing the SiC matrix. A weak peak corresponding to silica (SiO2) appeared after high–temperature treatment of the fiber; however, oxidation treatment of the matrix led to the appearance of a very strong diffraction peak that corresponds to SiO2. The analysis of the morphology and composition indicated cracking of the fiber surface after oxidation treatment, which was increasingly obvious with the increase in the oxidation treatment temperature. The elemental composition of the fiber surface changed significantly, with drastically decreased carbon element content and sharply increased oxygen element content.  相似文献   

13.
Cf/ZrC‐SiC composites with a density of 2.52 g/cm3 and a porosity of 1.68% were fabricated via reactive melt infiltration (RMI) of Si into nano‐porous Cf/ZrC‐C preforms. The nano‐porous Cf/ZrC‐C preforms were prepared through a colloid process, with a ZrC “protective coating” formed surrounding the carbon fibers. Consequently, highly dense Cf/ZrC‐SiC composites without evident fiber/interphase degradation were obtained. Moreover, abundant needle‐shaped ZrSi2 grains were formed in the composites. Benefiting from this unique microstructure, flexural strength, and elastic modulus of the composites are as high as 380 MPa and 61 GPa, respectively, which are much higher than Cf/ZrC‐SiC composites prepared by conventional RMI.  相似文献   

14.
Room and high temperature flexural strength and coefficient of thermal expansion (CTE) of HfB2 ultra‐high temperature ceramic (UHTC) particulate filled Cf/C composites are determined along with UHT oxidation behavior. Both room and high temperature strength of the composites were found to be broadly comparable to those of other thermal protection system materials currently being investigated. The CTE of the composites was measured both along and perpendicular to the fiber direction up to 1700°C and the values were found to depend on fiber orientation by approximately a factor of 3. Arc‐jet testing of the UHTC composites highlighted the excellent ultra‐high temperature oxidation performance of these materials.  相似文献   

15.
High‐temperature mechanical properties and tension‐tension fatigue behavior of three advanced SiC/SiC composites are discussed. The effects of steam on high‐temperature fatigue performance of the ceramic‐matrix composites are evaluated. The three composites consist of a SiC matrix reinforced with laminated, woven SiC (Hi‐Nicalon?) fibers. Composite 1 was processed by chemical vapor infiltration (CVI) of SiC into the Hi‐Nicalon? fiber preforms coated with boron nitride (BN) fiber coating. Composite 2 had an oxidation inhibited matrix consisting of alternating layers of silicon carbide and boron carbide and was also processed by CVI. Fiber preforms had pyrolytic carbon fiber coating with boron carbon overlay applied. Composite 3 had a melt‐infiltrated (MI) matrix consolidated by combining CVI‐SiC with SiC particulate slurry and molten silicon infiltration. Fiber preforms had a CVI BN fiber coating applied. Tensile stress‐strain behavior of the three composites was investigated and the tensile properties measured at 1200°C. Tension‐tension fatigue behavior was studied for fatigue stresses ranging from 80 to 160 MPa in air and from 60 to 140 MPa in steam. Fatigue run‐out was defined as 2 × 105 cycles. Presence of steam significantly degraded the fatigue performance of the CVI SiC/SiC composite 1 and of the MI SiC/SiC composite 3, but had little influence on the fatigue performance of the SiC/SiC composite 2 with the oxidation inhibited matrix. The retained tensile properties of all specimens that achieved fatigue run‐out were characterized. Composite microstructure, as well as damage and failure mechanisms were investigated.  相似文献   

16.
The oxidation behavior of Sylramic SiC fibers without a boron nitride surface layer was compared to Sylramic iBN SiC fibers with a boron nitride surface layer by conducting thermogravimetric analysis in dry O2 at temperatures ranging from 800 to 1300°C for times up to 100 hours. Sylramic fibers followed the Deal and Grove oxidation kinetic model. A transient period of accelerated oxidation kinetics was observed with Sylramic iBN fibers. Raman spectroscopic analysis of oxidized fibers provided evidence for a borosilicate glass structure. The boron concentrations in the oxides, quantified by inductively coupled plasma‐optical emission spectrometry, were correlated with the weight change behavior, oxide thickness, and fiber recession of the oxidized fibers. Oxides formed from Sylramic iBN fibers were typically higher in boron concentration, which led to initial rapid oxidation rates that were 3‐10 times faster than observed for pure SiC. Slower oxidation rates followed as the oxide surface became increasingly enriched with SiO2 due to boria volatilization, thus limiting boria effects on SiC fiber oxidation kinetics. The accelerated high‐temperature oxidation of SiC fibers due to the presence of BN are discussed in terms of the borosilicate glass structure and composition.  相似文献   

17.
Oxidation tests were carried out on HfB2–SiC, HfB2–HfC, HfB2–WC–SiC, and HfB2–WSi2 ceramics using an oxyacetylene torch. The samples were oxidized between 2100 and 2300 °C. From cross-sectional images, scale non-adherence was noted as a limiting factor in oxidation resistance. The sample with the best scale adherence was HfB2–WSi2. Factors involving scale non-adherence such as vapor pressure, coefficient of thermal expansion mismatch and phase transformations were considered. In comparing the scale adherence of the samples it was hypothesized that vapor pressure buildup is the principal contributing factor in the scale adherence differences observed among the tested samples. However, the coefficient of thermal expansion mismatch and HfO2 phase transformation cannot be neglected as contributing factors to scale non-adherence in all samples.  相似文献   

18.
To improve the oxidation resistance of SiC composites at high temperature, the feasibility of using Ti3SiC2 coated via electrophoretic deposition (EPD) as a SiC fiber reinforced SiC composite interphase material was studied. Through fiber pullout, Ti3SiC2, due to its lamellar structure, has the possibility of improving the fracture toughness of SiCf/SiC composites. In this study, Ti3SiC2 coating was produced by EPD on SiC fiber; using Ti3SiC2‐coated SiC fabric, SiCf/SiC composite was fabricated by hot pressing. Platelet Ti3SiC2 powder pulverized into nanoparticles through high‐energy wet ball milling was uniformly coated on the SiC fiber in a direction in which the basal plane of the particles was parallel to the fiber. In a 3‐point bending test of the SiCf/SiC composite using Ti3SiC2‐coated SiC fabric, the SiCf/SiC composite exhibited brittle fracture behavior, but an abrupt slope change in the strength‐displacement curve was observed during loading due to the Ti3SiC2 interphase. On the fracture surface, delamination between each layer of SiC fabric was observed.  相似文献   

19.
HfB2-20%wtSiC composite coating was prepared by liquid phase sintering method. After modification of HfB2 phase, the initial oxidation consumptions of the SiC coated samples were delayed from 500 ℃ to 800 ℃. Due to the higher oxidation activity of HfB2, the sufficient generated B2O3 is capable of inhibiting oxidation consumption of carbon substrate in oxidation activation region (800 ℃-1000 ℃) and fastest oxidation region (1000 ℃-1280 ℃). The enhanced oxidation activity of SiC above 1000℃ leads to the increased generation of SiO2, inhibiting the evaporation of B2O3 through the formation of Hf-B-Si-O glass layer, improving its stability and oxidation resistance above 1000℃. The heterogeneous refractory Hf-Oxides embedded in Hf-B-Si-O glass layer play role of reinforcement phases, restricting generation and spread of cracks. The inerting effect of Hf-B-Si-O glass layer strengthened with the increase of thermogravimetric analysis (TG) recycle oxidation times, indicating promising oxidation inhibition potential of the coating in dynamic aerobic environment.  相似文献   

20.
The thermal conductivity, thermal expansion, Youngs Modulus, flexural strength, and brittle–plastic deformation transition temperature were determined for HfB2, HfC0·98, HfC0·67, and HfN0·92 ceramics. The oxidation resistance of ceramics in the ZrB2–ZrC–SiC system was characterized as a function of composition and processing technique. The thermal conductivity of HfB2 exceeded that of the other materials by a factor of 5 at room temperature and by a factor of 2·5 at 820°C. The transition temperature of HfC exhibited a strong stoichiometry dependence, decreasing from 2200°C for HfC0·98 to 1100°C for HfC0·67 ceramics. The transition temperature of HfB2 was 1100°C. The ZrB2/ZrC/SiC ceramics were prepared from mixtures of Zr (or ZrC), SiB4, and C using displacement reactions. The ceramics with ZrB2 as a predominant phase had high oxidation resistance up to 1500°C compared to pure ZrB2 and ZrC ceramics. The ceramics with ZrB2/SiC molar ratio of 2 (25 vol% SiC), containing little or no ZrC, were the most oxidation resistant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号