首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sr2TiO4 is a promising photocatalyst for antibiotic degradation in wastewater. The photocatalytic performance of pristine Sr2TiO4 is limited to its wide bandgap, especially under visible light. Doping is an effective strategy to enhance photocatalytic performance. In this work, Nb/N co-doped layered perovskite Sr2TiO4 (Sr2TiO4:N,Nb) with varying percentages (0–5 at%) of Nb were synthesized by sol-gel and calcination. Nb/N co-doping slightly expanded the unit cell of Sr2TiO4. Their photocatalytic performance towards antibiotic (tetracycline) was studied under visible light (λ > 420 nm). When Nb/(Nb + Ti) was 2 at%, Sr2TiO4:N,Nb(2%) shows optimal photocatalytic performance with the 99% degradation after 60 min visible light irradiation, which is higher than pristine Sr2TiO4 (40%). The enhancement in photocatalytic performance is attributed to improving light absorption, and photo-generated charges separation derived from Nb/N co-doping. Sr2TiO4:N,Nb(2%) shows good stability after five cycles photocatalytic degradation reaction. The capture experiments confirm that superoxide radical is the leading active species during the photocatalytic degradation process. Therefore, the Nb/N co-doping in this work could be used as an efficient strategy for perovskite-type semiconductor to realize visible light driving for wastewater treatment.  相似文献   

2.
We have measured the Raman spectra of bismuth sodium titanate in its rhombohedral, tetragonal, and cubic phases, with special attention paid to the phase transitions at 584K and 837K (heating). Both transitions appear to be order-disorder and strongly first order, with large thermal hysteresis. The phonon spectra at temperature slightly below the tetragonal phase are remarkably similar to BaTiO3 with A1(To) modes at 130, 269, and 541 cm-1 (compared with 170, 270, 520 cm-1 in BaTiO3) and an E(TO) at 52 cm-1.  相似文献   

3.
Sr0.7Bi0.2TiO3 (SBT) was introduced into Bi0.5Na0.5TiO3 (BNT) via a standard solid-state route to modulate its relaxation behaviour and energy storage performance. With increasing SBT content, the perovskite structure of BNT transforms from a rhombohedral phase to a weakly polarized pseudo-cubic phase, and the relaxation behaviour is enhanced. In particular, the EDBS is improved from 120 kV/cm of BNT to 160 kV/cm of 0.6BNT-0.4SBT, which displays a large recoverable energy storage density (Wrec = 2.20 J/cm3), implying a large potential ability of energy storage for the 0.6BNT-0.4SBT ceramic. Moreover, both dielectric properties (28–326 °C) and energy storage properties (20–140 °C) exhibit a good thermal stability for the same 0.6BNT-0.4SBT composition. These characteristics suggest 0.6BNT-0.4SBT ceramic could be a promising candidate to be applied in a pulse power system over a broad temperature range.  相似文献   

4.
Na0.5Bi0.5TiO3 (NBT) and its modifications are known to be new lead-free ferroelectric materials and are promising for environment friendly devices. The systems under investigation were (i) NBT (trigonal/ferroelectric)–PbZrO3 (orthorhombic/antiferroelectric); (ii) NBT (trigonal/ferroelectric)–BiScO3 (trigonal/paraelectric); and (iii) NBT (trigonal/ferroelectric)–BiFeO3 (trigonal/antiferromagnetic).The lattice parameters change as expected from the respective ionic radii values. For NBT–PZ, the dielectric permittivity shows a large frequency and temperature dispersion suggesting a relaxor-like behaviour dependent on the thermal annealing of the samples. For NBT–BS, the Curie temperature increases with BS content as well as the diffuseness of the phase transition, connected with the introduced disorder. For NBT–BF, the overall behaviour of the permittivity of NBT is maintained up to 50% BF but anomalies of the permittivity appeared close to 600 °C, which might be connected with the onset of magnetic influence for high BF content.  相似文献   

5.
Bi0.5Na0.5TiO3‐based incipient ferroelectrics with pseudocubic structure generally show weak ferro‐/piezoelectricity but giant field‐induced strains. It is difficult to artificially and smoothly improve the electrical property based on conventional chemical doping or substituting without changing the crystal structure and suppressing the strain. Here, by introducing the semiconductor ZnO into the lead‐free incipient ferroelectric ((Bi0.5(Na0.84K0.16)0.5)0.96Sr0.04)(Ti0.975Nb0.025)O3 (BNT–2.5Nb) to form 0‐3 type composites (BNT–2.5Nb:xZnO), we experimentally illustrate that the resistance and ferro‐/piezoelectric properties can be enhanced significantly with an unchanged crystal structure and only slightly suppressed strains. For example, the remanent polarization and piezoelectric coefficient increase from 4.6 μC/cm2 and 8 pC/N for x=0 to 9.0 μC/cm2 and 31 pC/N for x=0.3. At the same time, the total strain only decreases from 0.140% for x=0 to 0.108% for x=0.3, whereas the negative strain increases from ?0.003% for x=0 to ?0.010% for x=0.3. And the thermal stability of d33 is enhanced. The corresponding mechanism is attributed to that ZnO can form a local field, preventing the depolarization of field induced macroscopic ferroelectric domains. Our results not only provide a feasible way to tune electrical properties of BNT‐based incipient ferroelectrics, but also may stimulate further work on artificially structured high‐performance ferroelectrics.  相似文献   

6.
Structure and piezoelectric coefficient (d33) of lead‐free 7.5% mole BaTiO3‐doped (Bi0.5Na0.5) TiO3 (BNT‐7.5%BT) polycrystalline piezoceramics have been characterized systematically as a function of poling electric (E) field. Dielectric permittivity and loss were also measured as functions of frequency and temperature. The piezoelectric coefficient d33 after poling at = 35 kV/cm can reach d33~186 pC/N, which is the highest value reported among (1?x) BNT–xBT compositions. A prior poling E field can reduce rhomobherdal lattice distortion, and enhance tetragonal phase and polarization ordering, that contribute significantly to the rapid raise of d33 and lower depolarizing temperature (Td). The reduced dielectric permittivity for the poled sample is attributed to ordered state and the pinning of field‐induced nanodomain walls by the presence of oxygen vacancies.  相似文献   

7.
Cu‐ and V‐doped BNKT10‐based piezoelectric ceramics with up to 0.5 at.% dopant concentration were synthesized and displayed more homogeneous grain growth compared to undoped BNKT10 ceramics. The defect chemistry and defect structure, studied by X‐ray photoelectron spectroscopy (XPS) and electron paramagnetic resonance (EPR), indicate a slightly rhombic electronic environment with major unidirectional octahedral distortion of the local environment of Cu. The solubility limit of Cu2+ in this material system is lower than 0.05 at.% Cu; above this limit, a Cu segregation at the grain boundaries is prevalent, unlike in PZT and KNN. Here, V was shown to be incorporated into the perovskite lattice and possess oxidation states of +4 and +5, acting both as isovalent and donor dopant, predominantly compensated by A‐site vacancies. A trend toward higher ceramic densities, higher maximum polarization, and higher remanent polarization with increasing Cu concentration was observed. A maximum mechanical coupling factor could be obtained in the case of doping with 0.4 at.% V and 0.1 at.% Cu with a planar coupling of 0.19 and a thickness coupling factor of 0.56.  相似文献   

8.
Dielectric ceramics with both excellent energy storage and optical transmittance have attracted much attention in recent years. However, the transparent Pb-free energy-storage ceramics were rare reported. In this work, we prepared transparent relaxor ferroelectric ceramics (1 − x)Bi0.5Na0.5TiO3xNaNbO3 (BNT–xNN) by conventional solid-state reaction method. We find the NN-doping can enhance the polarization and breakdown strength of BNT by suppressing the grain growth and restrained the reduction of Ti4+ to Ti3+. As a result, a high recoverable energy-storage density of 5.14 J/cm3 and its energy efficiency of 79.65% are achieved in BNT–0.5NN ceramic at 286 kV/cm. Furthermore, NN-doping can promote the densification to improve the optical transmittance of BNT, rising from ∼26% (x = 0.2) to ∼32% (x = 0.5) in the visible light region. These characteristics demonstrate the potential application of BNT–xNN as transparent energy-storage dielectric ceramics.  相似文献   

9.
Anatase TiO2‐modified flower‐like Bi2WO6 nanostructures were prepared by a simple hydrothermal reaction followed by layer‐by‐layer deposition and calcination. The photocatalytic activity was evaluated using Brilliant Red X3B, an anionic azo dye, as the target organic pollutant under UV‐Vis light irradiation. The experiment results showed that the photocatalytic activity of the hybrid increases first and then decreases with increasing loading amount of TiO2. The hybrid coated with four layers of TiO2 (containing 20 wt‐% TiO2) showed the highest photocatalytic activity, which is 10.45 and 3.20 times higher than that of pure Bi2WO6 and TiO2, respectively. The improved photocatalytic performance of TiO2‐modified Bi2WO6 nanostructures could be ascribed to the improved light‐harvesting ability, efficient photo‐generated electron‐hole separation, and enhanced adsorption of the dye. This work may shed light on the design of complex architectures and the exploitation of their potential applications.  相似文献   

10.
(Bi0.5Na0.5)TiO3–BiAlO3 lead‐free materials exhibit excellent ferroelectric properties, but its depolarization temperature is relatively low which is the major obstacle limiting the material's practical application. In this study, the effects of Manganese (Mn) modification on the microstructure, ferroelectric properties and depolarization behavior of 0.96(Bi0.5Na0.5)(Ti1?xMnx)O3–0.04BiAlO3 ceramics were investigated. It was found that the average grain size was enlarged and ferroelectric properties were enhanced with small Mn addition, meanwhile the tangent loss decreased. The remnant polarization (Pr) of the samples reached an optimal value (~41 μC/cm2) as Mn content increased up to 0.7 mol%, whereas further addition resulted in the decrease in Pr. Moreover, appropriate Mn addition (x=0.7%) can improve the depolarization temperature from 140°C to 161°C determined from thermally stimulated depolarization currents measurement.  相似文献   

11.
The structures and functional properties of Na0.5Bi0.5TiO3xKNbO3 (NBT‐xKN) solid solutions, with x in the range from 0.01 to 0.09, were investigated using a combination of high‐resolution synchrotron X‐ray powder diffraction (SXPD) and ferroelectric property measurements. For low KN contents, an irreversible transformation from cubic to rhombohedral phases was observed after the application of a high electric field, indicating that the polar nanoregions (PNRs) in the unpoled state can be transformed into metastable long‐range ordered ferroelectric domains in the poled state. In contrast, the near‐cubic phase of the unpoled ceramics was found to be remarkably stable and was retained on cooling to a temperature of ?175°C. Upon heating, the field‐induced metastable ferroelectric rhombohedral phase transformed back to the nanopolar cubic state at the structural transformation temperature, TST, which was determined as approximately 225°C and 125°C for KN contents of 3% and 5% respectively. For the field‐induced rhombohedral phase in the poled specimens, the pseudo‐cubic lattice parameter, ap, exhibited an anomalous reduction while the inter‐axial angle increased towards a value of 90° on heating, resulting in an overall increase in volume. The observed structural changes were correlated with the results of temperature‐dependent dielectric, ferroelectric and depolarization measurements, enabling the construction of a phase diagram to define the stable regions of the different ferroelectric phases as a function of composition and temperature.  相似文献   

12.
The influence of Ti-nonstoichiometry in BNT was investigated using XRD, SEM/EDX and electrical measurements. It is shown that nonstoichiometric compositions of BNT derived materials tend to maintain stoichiometry by forming a secondary phase like TiO2 or by the evaporation of volatile compounds like Bi2O3 and Na2O. Due to this ability, variations of the Ti-content can be used to control the grain size of the material with little impact on electrical properties. The data also implies that the used processing temperatures lead to evaporation approximately 2 mol% of A-site cations during preparation since the sample with 1 mol% Ti-deficiency still shows TiO2 secondary phase.  相似文献   

13.
Lead‐free BNT‐based piezoceramics, (1?x)Bi0.5Na0.5TiO3xBi(Mg0.5Ti0.5)O3 [(1?x)BNT–xBMT] (0.00 ≤  0.06) binary system, were synthesized using a conventional ceramic fabrication method. Effect of Bi(Mg0.5Ti0.5)O3 (BMT) substitution on room temperature (RT) crystal structure, and temperature dependence of electric properties were investigated. The XRD indicates that a pure perovskite phase is formed. The introduction of BMT decreases EC of BNT from 7.3 to 4.0 kV/mm, and increases d33 from 58 pC/N to 110 pC/N for the = 0.05. The system shows a typical ferroelectric (FE) polarization loop P(E) and butterfly bipolar strain‐electric S(E) curve at RT. For the composition of 0.95BNT–0.05BMT antiferroelectric (AFE) phase appears near 80°C, characterized by a constricted P(E) loop and altered bipolar S(E) butterfly, and gradually prevails with increasing temperature. Temperature dependence of dielectric constant shows that TC increases from 310°C for pure BNT to 352°C for the = 0.05. The results indicate that the piezoelectric properties of BNT have been improved by means of Bi(Mg0.5Ti0.5)O3 substitution.  相似文献   

14.
A new lead‐free BNT‐based piezoelectric ceramics of (1 ? x)Bi0.5Na0.5TiO3xBi(Al0.5Ga0.5)O3 (x = 0, 0.02, 0.03, 0.04, and 0.05) were synthesized using a conventional ceramic fabrication method. Their structures and electrical properties were investigated. All the samples show a typical ferroelectric P(E) loops and S(E) curves at room temperature. The optimal properties are obtained at the composition of the x = 0.03. The substitution of Bi(Al0.5Ga0.5)O3 enhances piezoelectric constant and increases Curie temperature from 58 pC/N and 310°C of pure BNT to 93 pC/N and 325°C of the x = 0.03. The temperature‐dependent P(E) loops and S(E) curves of 0.97BNT–0.03BAG indicate that phase transition from ferroelectric to antiferroelectric takes place over a very wide temperature region from 80°C to 180°C. The results show that the introduction of BAG improves the electrical properties of BNT.  相似文献   

15.
In the present work, Na0.5Bi0.5TiO3 (NBT) ceramics with the addition of excess Bi in two different ways – before calcination and before sintering – are considered, revealing how the excess Bi affects their microstructure and chemical content. Average grain size is seen to decrease, with the grain size distribution becoming less diffused at higher excess Bi concentrations. The reason for such a feature is the shift of the sintering temperature region where the abnormal grain growth starts to contribute towards higher temperatures. The influence of excess Bi is more pronounced in the case if it is added before calcination. It was discovered that a small amount of excess Bi helps to prevent the formation of Bi-deficient inclusions. While, high concentrations of excess Bi induce the formation of Bi-rich inclusions – most probably Na0.5Bi4.5Ti4O15. Possible mechanisms of formation of both types of inclusions are discussed in detail. Instead of Bi over-stoichiometry, elevated Na content and slightly lower O content were detected in the matrix grains of the sintered NBT ceramics prepared with excess Bi. These deviations increase upon increasing the added excess Bi concentration. The presence of another, Na-rich phase, is assumed, which could not be detected by X-ray diffraction or by energy-dispersive X-ray analysis.  相似文献   

16.
We investigated the influence of CuO amount (0.5–3.0 mol%), sintering temperature (900°C–1000°C), and sintering time (2–6 h) on the low‐temperature sintering behavior of CuO‐added Bi0.5(Na0.78K0.22)0.5TiO3 (BNKT22) ceramics. Normalized strain (Smax/Emax), piezoelectric coefficient (d33), and remanent polarization (Pr) of 1.0 mol% CuO‐added BNKT22 ceramics sintered at 950°C for 4 h was 280 pm/V, 180 pC/N, and 28 μC/cm2, respectively. These values are similar to those of pure BNKT22 ceramics sintered at 1150°C. In addition, we investigated the performance of multilayer ceramic actuators made from CuO‐added BNKT22 in acoustic sound speaker devices. A prototype sound speaker device showed similar output sound pressure levels as a Pb(Zr,Ti)O3‐based device in the frequency range 0.66–20 kHz. This result highlights the feasibility of using low‐cost multilayer ceramic devices made of lead‐free BNKT‐based piezoelectric materials in sound speaker devices.  相似文献   

17.
High pyroelectric performance and good thermal stability of pyroelectric materials are desirable for the application of infrared thermal detectors. In this work, enhanced pyroelectric properties were achieved in a new ternary (1?x)(0.98(Bi0.5Na0.5)(Ti0.995Mn0.005)O3–0.02BiAlO3)–xNaNbO3 (BNT–BA–xNN) lead‐free ceramics. The effect of NN addition on the microstructure, phase transition, ferroelectric, and pyroelectric properties of BNT–BA–xNN ceramics were investigated. It was found that the average grain size decreased as x increased to 0.03, whereas increased with further NN addition. The pyroelectric coefficient p at room temperature (RT) was significantly increased from 3.87 × 10?8Ccm?2K?1 at = 0 to 8.45 × 10?8Ccm?2K?1 at = 0.03. The figures of merit (FOMs), Fi, Fv and Fd, were also enhanced with addition of NN. Because of high p (7.48 × 10?8Ccm?2K?1) as well as relatively low dielectric permittivity (~370) and low dielectric loss (~0.011), the optimal FOMs at RT were obtained at = 0.02 with Fi = 2.66 × 10?10 m/V, Fv = 8.07 × 10?2 m2/C, and Fd = 4.22 × 10?5 Pa?1/2, which are superior to other reported lead‐free ceramics. Furthermore, the compositions with  0.03 exhibited excellent temperature stability in a wide temperature range from 20 to 80°C because of high depolarization temperature (≥110°C). Those results unveil the potential of BNT–BA–xNN ceramics for infrared detector applications.  相似文献   

18.
This study investigates the phase formation of Zr‐substituted [(Na0.5Bi0.5)0.80Ba0.20](Ti1?yZry)O3 system during its solid‐state synthesis. The synthesis was found to be a multistep process accompanied by the formation of a number of intermediate phases which depend on the solid solution's composition and sintering temperatures. Single‐phase solid solutions were obtained when the sintering temperature was increased to 1000°C–1100°C. Increase in content of substituting Zr‐ions tends to linearly increase in the size of the crystal cell leading to reduction in the tolerance factor which results in the increase in stability of the antiferroelectric phase relative to the ferroelectric phase.  相似文献   

19.
In this study, the high‐quality cubic‐shaped single‐crystalline Na0.5Bi0.5TiO3 (NBT) has been successfully synthesized by a hydrothermal method, in which their grain size can be modulated effectively by both mineralizer concentration and reactant concentration. Our result shows that the formation of fine cubic‐shaped NBT can be promoted by increasing the mineralizer concentration, while be inhibited by increasing the reactant concentration as a whole. However, further higher mineralizer concentration or lower reactant concentration may lead to a smaller grain size in NBT. From our results, it is suggested that, to synthesize a big single crystalline of NBT, a suitable mineralizer and reactant concentration should be carefully considered. Interestingly, it is also found that the one‐dimensional nanostructure may be more inclined to form Na–Ti–O (NT) compounds rather than NBT phase. And the growth mechanism and a possible growth model have been presented. Our result presents a simple and green technical preparation route for the low‐cost and high‐quality NBT single crystalline with self‐designed shape and size.  相似文献   

20.
The microstructure, phase structure, ferroelectric, and dielectric properties of (1?x)Bi0.5Na0.5TiO3xNaNbO3 [(1?x)BNT‐xNN] ceramics conventionally sintered in the temperature range of 1080°C–1120°C were investigated as a candidate for capacitor dielectrics with wide temperature stability. Perovskite phase with no secondary impurity was observed by XRD measurement. With increasing NN content, (1?x)BNT‐xNN was found to gradually transform from ferroelectric (x = 0–0.05) to relaxor (x = 0.10–0.20) and then to paraelectric state (x = 0.25–0.35) at room temperature, indicated by PIE loops analysis, associated with greatly enhanced dielectric temperature stability. For the samples with x = 0.25–0.35, the temperature coefficient of capacitance (TCC) was found <11% in an ultra‐wide temperature range of ?60°C–400°C with moderate dielectric constant and low dielectric loss, promising for temperature stable capacitor applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号