首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Manure is a key nutrient resource on smallholder farms in the tropics, especially on poorly buffered sandy soils, due to its multiple benefits for soil fertility. Farmers preferentially apply manure to fields closest to homesteads (homefields), which are more fertile than fields further away (outfields). A three-year experiment was established on homefields and outfields on sandy and clayey soils to assess the effects of mineral nitrogen (N) fertilizer application in combination with manure or mineral phosphorus (P) on maize yields and soil chemical properties. Significant maize responses to application of N and manure were observed on all fields except the depleted sandy outfield. Large amounts of manure (17 t ha−1 year−1) were required to significantly increase soil organic carbon (SOC), pH, available P, and base saturation, and restore productivity of the depleted sandy outfield. Sole N as ammonium nitrate (100 kg N ha−1) or in combination with single superphosphate led to acidification of the sandy soils, with a decrease of up to 0.8 pH units after three seasons. In a greenhouse experiment, N and calcium (Ca) were identified as deficient in the sandy homefield, while N, P, Ca, and zinc (Zn) were deficient or low on the sandy outfield. The deficiencies of Ca and Zn were alleviated by the addition of manure. This study highlights the essential role of manure in sustaining and replenishing soil fertility on smallholder farms through its multiple effects, although it should be used in combination with N mineral fertilizers due to its low capacity to supply N.  相似文献   

2.
Promiscuous soyabean varieties have potential to contribute significantly to income generation, food security and soil N budgets on smallholder farms. One of the major factors limiting this potential is farmers’ preference to allocate nutrient resources to food security cereal crops on the most fertile fields, leaving grain legumes to grow on residual fertility on infertile fields. Two experiments were conducted to: (i) compare the current farmer practice with targeting manure and single super phosphate (SSP) to soyabean in a three-year rotation cycle on two fields with different soil fertility: an infertile sandy soil and a more fertile clay soil; and (ii) assess the effects of variability of soil fertility within and across farms on productivity of soyabean and groundnut. In the first experiment, soyabean (<0.2 t ha−1) and maize yields (<0.7 t ha−1) without fertilizer were poor on a degraded sandy soil. Both crops responded poorly to SSP due to deficiency of other nutrients. Manure application significantly increased soyabean and maize yields, led to yield stabilization over three seasons and also significantly increased the proportion of N2 fixed by soyabean (measured using 15N natural abundance) from 60% to 83%. On the sandy soil, P was used more efficiently and gross margins were greater when SSP and manure were applied to maize in a maize–soyabean rotation. Soyabean and maize yields without fertilizer inputs were larger on clay soil with moderate fertility (0.4–0.7 t ha−1 and 2.0–2.3 t ha−1 respectively) and were significantly increased by application of SSP and manure. Within rotations, P recovery was higher when manure and SSP were applied to maize (43 and 25%) than when applied to soyabean (20 and 19%). However, application of manure to soyabean on the clay was more profitable than application to maize for individual crops and within rotations. In the second experiment, soyabean and groundnut yields were largest (∼1 and ∼0.8 t ha−1 respectively) on plots closest to homesteads on wealthy farms, which were more fertile due to good past management. Yields were poor (< 0.5 t ha−1) on other fields which previously had received little nutrient inputs. Soyabean and groundnut yields correlated well with available P (R 2 = 0.5–0.7) and soil organic C (SOC) contents (R 2 = 0.4–0.6). For smallholder farmers to maximise benefits from legume production they need to focus attention on the more fertile plots, although production should be optimized in relation to maize. Targeting nutrients to maize as currently practiced by farmers was more efficient and economic under poor soil fertility conditions, whilst potential exists to increase income by targeting manure to soyabean on the more fertile soils.  相似文献   

3.
Smallholder land productivity in drylands can be increased by optimizing locally available resources, through nutrient enhancement and water conservation. In this study, we investigated the effect of tillage system, organic resource and chemical nitrogen fertilizer application on maize productivity in a sandy soil in eastern Kenya over four seasons. The objectives were to (1) determine effects of different tillage-organic resource combinations on soil structure and crop yield, (2) determine optimum organic–inorganic nutrient combinations for arid and semi-arid environments in Kenya and, (3) assess partial nutrient budgets of different soil, water and nutrient management practices using nutrient inflows and outflows. This experiment, initiated in the short rainy season of 2005, was a split plot design with 7 treatments involving combinations of tillage (tied-ridges, conventional tillage and no-till) and organic resource (1 t ha−1 manure + 1 t ha−1 crop residue and; 2 t ha−1 of manure (no crop residue) in the main plots. Chemical nitrogen fertilizer at 0 and 60 kg N ha−1 was used in sub-plots. Although average yield in no-till was by 30–65% lower than in conventional and tied-ridges during the initial two seasons, it achieved 7–40% higher yields than these tillage systems by season four. Combined application of 1 t ha−1 of crop residue and 1 t ha−1 of manure increased maize yield over sole application of manure at 2 t ha−1 by between 17 and 51% depending on the tillage system, for treatments without inorganic N fertilizer. Cumulative nutrients in harvested maize in the four seasons ranged from 77 to 196 kg N ha−1, 12 to 27 kg P ha−1 and 102 to 191 kg K ha−1, representing 23 and 62% of applied N in treatments with and without mineral fertilizer N respectively, 10% of applied P and 35% of applied K. Chemical nitrogen fertilizer application increased maize yields by 17–94%; the increases were significant in the first 3 seasons (P < 0.05). Tillage had significant effect on soil macro- (>2 mm) and micro-aggregates fractions (<250 μm >53 μm: P < 0.05), with aggregation indices following the order no-till > tied-ridges > conventional tillage. Also, combining crop residue and manure increased large macro-aggregates by 1.4–4.0 g 100 g−1 soil above manure only treatments. We conclude that even with modest organic resource application, and depending on the number of seasons of use, conservation tillage systems such as tied-ridges and no-till can be effective in improving crop yield, nutrient uptake and soil structure and that farmers are better off applying 1 t ha−1 each of crop residue and manure rather than sole manure.  相似文献   

4.
Major challenges for combined use of organic and mineral nutrient sources in smallholder agriculture include variable type and quality of the resources, their limited availability, timing of their relative application and the proportions at which the two should be combined. Short-term nutrient supply capacity of five different quality organic resources ranging from high to low quality, namely Crotalaria juncea, Calliandra calothyrsus, cattle manure, maize stover and Pinus patula sawdust were tested in the field using maize as a test crop. The study was conducted on two contrasting soil types at Makoholi and Domboshawa, which fall under different agro-ecological regions of Zimbabwe. Makoholi is a semi-arid area (<650 mm yr−1) with predominantly coarse sandy soils containing approximately 90 g kg−1 clay while Domboshawa (>750 mm yr−1) soils are sandy-clay loams with 220 g kg−1 clay. Each organic resource treatment was applied at low (2.5 t C ha−1) and high (7.5 t C ha−1) biomass rates at each site. Each plot was sub-divided into two with one half receiving 120 kg N ha−1 against zero in the other. At Makoholi, there was a nine-fold increase in maize grain yield under high application rates of C. juncea over the unfertilized control, which yielded only 0.4 t ha−1. Combinations of mineral N fertilizer with the leguminous resources and manure resulted in between 24% and 104% increase in grain yield against sole fertilizer, implying an increased nutrient recovery by maize under organic–mineral combinations. Maize biomass measured at 2 weeks after crop emergence already showed treatment differences, with biomass yields increasing linearly with soil mineral N availability (R 2 = 0.75). This 2-week maize biomass in turn gave a positive linear relationship (R 2 = 0.82) with grain yield suggesting that early season soil mineral N availability largely determined final yield. For low quality resources of maize stover and sawdust, application of mineral N fertilizer resulted in at least a seven-fold grain yield increase compared with sole application of the organic resources. Such nutrient combinations resulted in grain harvest indices of between 44% and 48%, up from a mean of 35% for sole application, suggesting the potential of increasing maize productivity from combinations of low quality resources with mineral fertilizer under depleted sandy soils. At Domboshawa, grain yields averaged 7 t ha−1 and did not show any significant treatment differences. This was attributed to relatively high levels of fertility under the sandy-clay loams during this first year of the trial implementation. Differences in N supply by different resources were only revealed in grain and stover uptake. Grain N concentration from the high quality leguminous resources averaged 2% against 1.5% from sawdust treatments. We conclude that early season soil mineral N availability is the primary regulatory factor for maize productivity obtainable under poor sandy soils. Maize biomass at 2 weeks is a potential tool for early season assessment of potential yields under constrained environments. However, the likely impact on system productivity following repeated application of high N-containing organic materials on different soil types remains poorly understood.  相似文献   

5.
Variability of soil fertility within, and across farms, poses a major challenge for increasing crop productivity in smallholder systems of sub-Saharan Africa. This study assessed the effect of farmers’ resource endowment and nutrient management strategies on variability in soil fertility and plant nutrient uptake between different fields in Gokwe South (ave. rainfall ~650 mm year−1; 16.3 persons km−2) and Murewa (ave. rainfall ~850 mm year−1; 44.1 persons km−2) districts, Zimbabwe. In Murewa, resource-endowed farmers applied manure (>3.5 t ha−1 year−1) on fields closest to their homesteads (homefields) and none to fields further away (outfields). In Gokwe the manure was not targeted to any particular field, and farmers quickly abandoned outfields and opened up new fields further way from the homestead once fertility had declined, but homefields were continually cultivated. Soil available P was higher in homefields (8–13 mg kg−1) of resource-endowed farmers than on outfields and all fields on resource constrained farms (2–6 mg kg−1) in Murewa. Soil fertility decreased with increasing distance from the homestead in Murewa while the reverse trend occurred in Gokwe South, indicating the impact of different soil fertility management strategies on spatial soil fertility gradients. In both districts, maize showed deficiency of N and P, implying that these were the most limiting nutrients. It was concluded that besides farmers’ access to resources, the direction of soil fertility gradients also depends on agro-ecological conditions which influence resource management strategies.  相似文献   

6.
Management of spatial and temporal variability of soil fertility within fields and farms is one major challenge for increasing farm-level crop productivity in smallholder agriculture. A study was conducted across 120 on-farm field sites in three agro-ecological regions of Zimbabwe to identify management factors influencing the formation of within-field/farm soil fertility gradients. Using farmer participatory research approaches, host farmers were put into three classes according to resource endowment, namely, Resource-endowed, Intermediate and Resource-constrained farmers. Each host farmer identified the most (rich) and least (poor) productive field or field section, which were then studied over two years. Farmer criteria for defining soil fertility ranged from colour through elements of soil structure to crop response following external nutrient inputs. The fertility ranking of fields consistently matched with laboratory indices, with rich fields containing significantly more soil organic carbon (SOC) and nutrients than the corresponding poor fields. Fertility gradients were evident within and across farms belonging to different farmer classes. The mean SOC content for rich fields were >6.0 g kg−1 compared with <4.6 g kg−1 for the designated poor fields. Rich fields belonging to Resource-endowed farmers had 16–28% more SOC than those belonging to their resource-constrained counterparts, suggesting differences in organic matter management. Differences in SOC and fertility status between rich and poor fields were wider in two of the study areas which had more than 70 years of cultivation in contrast to the third site which had been under smallholder farming for only 20 years, suggesting that the observed fertility gradients are a cumulative effect of years of differential management practices by different farmer classes. Analysis of potential benefits from in situ organic biomass inputs suggested that the processes of organic matter capture and utilization discriminated against Resource-constrained farmers. About 50% of in situ biomass, preferentially maize stover, was lost in three dry season months, and up to 72% of potentially recyclable N is lost from poor fields managed by Resource-constrained farmers. In contrast, Resource-endowed farmers incorporated more than 1.5 t C, 25 kg N and 5 kg P ha−1 season−1 because of their access to draught power during the early dry season. Such inputs could make a difference on these nutrient-depleted soils. Intermediate farmers represented a diverse transitional group whose size and variability could be indicative of the dynamism of technology usage. It was concluded that management of soil fertility gradients to increase crop productivity on smallholder farms hinges on increasing the capacity and efficiency with which organic matter is generated and utilized by different farmer weaclth groups across temporal scales.  相似文献   

7.
The rapidly increasing population and associated quest for food and feed in China has led to increased soil cultivation and nitrogen (N) fertilizer use, and as a consequence to increased wind erosion and unbalanced crop nutrition. In the study presented here, we explored the long-term effects of various combinations of maize stover, cattle manure and nitrogen (N) and phosphorus (P) fertilizer applications on maize (Zea mays L.) yield and nutrient and water use efficiencies under reduced tillage practices. In a companion paper, we present the effects on nutrient balances and soil fertility characteristics. The ongoing factorial field trial was conducted at Shouyang Dryland Farming Experimental Station in northern China from 1993 onwards. The incomplete, determinant-optimal design comprised 12 treatments, including a control treatment, in duplicate. Grain yields and N, P, and potassium (K) uptakes and N, P and K use efficiencies were greatly influenced by the amount of rain during the growing season (GSR), and by soil water at sowing (SWS). There were highly significant interactions between GSR and added stover and manure, expressed in complex annual variations in grain yield and N, P and K use efficiencies. Annual mean grain yields ranged from 3,000 kg ha−1 to 10,000 kg ha−1 and treatment mean yields from 4,500 kg ha−1 to 7,000 kg ha−1. Balanced combination of stover (3,000–6,000 kg), manure (1,500–6,000 kg) and N fertilizer (105 kg) gave the highest yield. Stover and manure were important for supplying K, but the effects differed greatly between years. Overall mean N recovery efficiency (NRE) ranged from 28% to 54%, depending on N source. NRE in wet years ranged from 50% to 90%. In conclusion, balanced combinations of stover, manure and NP fertilizer gave the highest yield and NRE. Reduced tillage with adding stover and manure in autumn prior to ploughing is effective in minimizing labor requirement and wind erosion. The potentials of split applications of N fertilizer, targeted to the need of the growing crop (response farming), should be explored to further increase the N use efficiency.  相似文献   

8.
Farm typologies are a useful tool to assist in unpacking and understanding the wide diversity among smallholder farms to improve targeting of crop production intensification strategies. Sustainable crop production intensification will require the development of an array of nutrient management strategies tailored to farm-specific conditions, rather than blanket recommendations across diverse farms. This study reviewed key literature on smallholder farm typologies focusing on three countries (Kenya, Malawi and Zimbabwe), to gain insights on opportunities for crop production intensification, and the importance of developing farm-specific nutrient management practices. Investigations on farm typologies have done well in highlighting the fundamental differences between farm categories, with 3–5 typologies often adequate to represent the wide differences in resource endowment. Resource-endowed farmers have ready access to large quantities of manure and mineral fertilizers, which contribute to higher soil fertility and crop productivity on their farms. Resource-constrained households use little or no manure and mineral fertilizers, and have limited capacity to invest in labour-demanding soil fertility management technologies. These farmers often have to rely on off-farm opportunities for income that are largely limited to selling unskilled labour to their resource-endowed neighbors. The variability in management practices by farmers has resulted in three main soil fertility classes that can be used for targeting soil fertility management technologies, characterized by potential response to fertilizer application as: (1) low-responsive fertile fields that receive large additions of manure and fertilizer; (2) high-responsive infertile fields that receive moderate nutrient applications; (3) poorly responsive degraded soils cultivated for many years with little or no nutrient additions. The main conclusions drawn from the review are: (1) resource constrained farmers constitute the widest band across the three countries, with many of the farmers far below the threshold for sustainable maize production intensification and lacking capacity to invest in improved seed and fertilizer, (2) farm sizes and livestock ownership were key determinants for both farmer wealth status and farm productivity, and (3) soil organic carbon and available P were good indicators for predicting previous land management, that is also invariably linked to farmer resource endowment.  相似文献   

9.
A field experiment was conducted on a loamy sand soil for six years to quantify the effect of soil organic matter on indigenous soil N supply and productivity of irrigated wheat in semiarid sub-tropical India. The experiment was conducted by applying different combinations of fertilizer N (0–180 kg N ha−1), P (0–39 kg P ha−1) and K (0–60 kg K ha−1) to wheat each year. For the data pooled over years, fertilizer N together with soil organic carbon (SOC) and their interaction accounted for 75% variation in wheat yield. The amount of fertilizer N required to attain a yield goal decreased as the SOC concentration increased indicating enhanced indigenous soil N supply with an increase in SOC concentration. Besides SOC concentration, the soil N supply also depended on yield goal. For a yield goal of 4 tons ha−1, each ton of SOC in the 15 cm plough layer contributed 4.75 kg N ha−1 towards indigenous soil N supply. An increase in the soil N supply with increase in SOC resulted in enhanced wheat productivity. The contribution of 1 ton SOC ha−1 to wheat productivity ranged from 15 to 33 kg ha−1 across SOC concentration ranging from 3 to 9 g kg-1 soil. The wheat productivity per ton of organic carbon declined curvilinearly as the native SOC concentration increased. The change in wheat productivity with SOC concentration shows that the effect of additional C sequestration on wheat productivity will depend on the existing SOC concentration, being higher in low SOC soils. Therefore, it will be more beneficial to sequester C in soils with low SOC than with relatively greater SOC concentration. In situations where the availability of organic resources for recycling is limited, their application may be preferred in soils with low SOC concentration. The results show that an increase in C sequestration will result in enhanced wheat productivity but the increase will depend on the amount of fertilizer applied and the existing fertility level of the soil.  相似文献   

10.
Identification of a sustainable integrated soil fertility management option in the tropics will not only salvage the degraded soils but also enhances the attainment of the goal of food security. This study was conducted in 2004 and 2005 on a degraded tropical Alfisol in south western Nigeria to evaluate the effect of legume residue, poultry manure and inorganic fertilizers on maize yield, nutrient uptake and soil properties. The treatments consisted of two rates of poultry manure (0 and 5 t ha−1), three rates of N fertilizer (0, 50 and 100 kg N ha−1 applied as urea), three rates of P fertilizer (0, 30 and 60 kg P ha−1 applied as single super phosphate) and two soybean treatments (with or without incorporation of legume residue) in various combinations as a factorial experiment in Randomized Complete Block design with three replicates. Results showed that poultry manure alone led to significant increase in maize yield (60%) and soil organic matter (45%). In contrast, legume residue incorporation gave significantly lower increase in yield (7%) and soil organic matter (11%). However, the combined application of poultry manure and legume incorporation led to 72% increase in maize yield as opposed to 63 and 10% increase recorded when manure alone or legume alone were incorporated, respectively. Optimal maize yield was achieved when manure application was integrated with P fertilizer application. The interaction of P fertilizer and legume incorporation indicated that soil phosphorus and maize P concentration were significantly increased with the application of the P fertilizer and legume incorporation. Hence, the application of P fertilizer alone is most likely to be economical compared with its integration with legume incorporation.  相似文献   

11.
Effects of nutrient cycling on grain yields and potassium balance   总被引:2,自引:0,他引:2  
Soybean-maize rotation is a profitable cropping system and is used under rain fed conditions in north China. Since crop yields have been reported to decrease when K fertilizers are not used, we analyzed the productivity trends, soil-exchangeable and non-exchangeable K contents, and K balance in a continuous cropping experiment conducted in an area with an alfisol soil in the Liaohe River plain, China. The trial, established in early 1990 and continued till 2007, included 8 combinations of recycled manure and N, P, and K fertilizers. In the unfertilized plot, the yields of soybean and maize were 1,486 and 4,124 kg ha−1 respectively (mean yield over 18 years). The yields of both soybean and maize increased to 2,195 and 7,476 kg ha−1, respectively, in response to the application of inorganic N, P, and K fertilizers. The maximum yields of soybean (2,424 kg ha−1) and maize (7,790 kg ha−1) were obtained in the plots under treatment with N, P, and K fertilizers and recycled manure. K was one of the yield-limiting macronutrients: regular K application was required to make investments in the application of other mineral nutrients profitable. The decrease in the yields of soybean and maize owing to the absence of K application averaged 400 and 780 kg ha−1, respectively. Soybean seed and maize grain yields significantly increased with the application of recycled manure. For both these crops, the variation coefficients of grain were lower with treatments that included recycled manure than without treatment. After 18 years, the soil-exchangeable and non-exchangeable K concentrations decreased; the concentrations in the case of treatments that did not include K fertilizers were not significantly different. Treatment with N, P, and K fertilizers appreciably improved the fertility level of the soil, increased the concentration of soil-exchangeable K, and decreased the non-exchangeable K concentration. In soils under treatment with N, P, and K fertilizers and recycled manure, the soil-exchangeable and non-exchangeable K levels in the 0–20 cm-deep soil layer increased by 34% and 2%, respectively, over the initial levels. Both soil-exchangeable and non-exchangeable K concentrations were the highest with on treatment with N, P, and K fertilizers and recycled manure, followed by treatment with N, P, and K fertilizers. These concentrations were lowest in unfertilized soils; the other treatments yielded intermediate results. The results showed a total removal of K by the crops, and the amount removed exceeded the amount of K added to the soil; in treatments that did not include K fertilizers, a net negative K balance was observed, from 184 to 575 kg ha−2. The combined use of N, P, and K fertilizers and recycled manure increased the K content of the 0–20 cm-deep soil layer by 125% compared to the increase obtained with the application of N, P, and K fertilizers alone. The results clearly reveal that current mineral fertilizer applications are inadequate; instead, the annual application of recycled manure along with N, P, and K fertilizers could sustain future yields and soil productivity.  相似文献   

12.
A 19-year field experiment on a Mollisol agroecosystem was carried out to study the productivity of a wheat-maize-soybean rotation and the changes in soil carbon and nutrient status in response to different fertiliser applications in Northeast China. The experiment consisted of seven fertiliser treatments: (1) unfertilised control, (2) annual application of P and K fertilisers, (3) N and K fertilisers, (4) N and P fertilisers, (5) N, P and K fertilisers, (6) N, K and second level P fertilisers, and (7) N, P and second level K fertilisers. Without fertiliser, the Mollisols could support an average yield of 1.88 t ha−1 for wheat, 3.89 t ha−1 for maize and 2.12 t ha−1 for soybean, compared to yields of 3.20, 9.30 and 2.45 t ha−1 respectively for wheat, maize and soybean if the crop nutrient demands were met. At the potential yield level, the N, P and K removal by wheat are 79 kg N ha−1, 15 kg P ha−1, and 53 kg K ha−1, by maize are 207 kg N ha−1, 47 kg P ha−1, and 180 kg K ha−1, by soybean are 174 kg N ha−1, 18 kg P ha−1, and 55 kg K ha−1. Crop yield, change in soil organic carbon (SOC), and the total and available nutrient status were used to evaluate the fertility of this soil over different time periods. This study showed that a fertiliser strategy that was able to maintain yields in the short term (19 years) would not maintain the long term fertility of these soils. Although organic carbon levels did not rise to the level of virgin soil in any treatment, a combination of N, P and K fertiliser that approximated crop export was required to stabilise SOC and prevent a decline in the total store of soil nutrients.  相似文献   

13.
The sustainability of cereal/legume intercropping was assessed by monitoring trends in grain yield, soil organic C (SOC) and soil extractable P (Olsen method) measured over 13 years at a long-term field trial on a P-deficient soil in semi-arid Kenya. Goat manure was applied annually for 13 years at 0, 5 and 10 t ha−1 and trends in grain yield were not identifiable because of season-to-season variations. SOC and Olsen P increased for the first seven years of manure application and then remained constant. The residual effect of manure applied for four years only lasted another seven to eight years when assessed by yield, SOC and Olsen P. Mineral fertilizers provided the same annual rates of N and P as in 5 t ha−1 manure and initially ,gave the same yield as manure, declining after nine years to about 80%. Therefore, manure applications could be made intermittently and nutrient requirements topped-up with fertilizers. Grain yields for sorghum with continuous manure were described well by correlations with rainfall and manure input only, if data were excluded for seasons with over 500 mm rainfall. A comprehensive simulation model should correctly describe crop losses caused by excess water.  相似文献   

14.
Based on a consecutive 16-year field trial and meteorological data, the effects of fertilization on the nutrient budget and nitrogen use efficiency in farmland soil under different precipitation years were studied. With no fertilization treatment, the grain yield of maize was 3,520 kg ha−1 (mean yield over 13 years). But the maximum yield increased to 7,470 kg ha−1 when treated with mineral N, P and K fertilizers and recycled manure. The nutrient uptake also increased by twofold to threefold in NPKM treated field compared with that in the control treatment. The highest yields were obtained in years with normal precipitation, despite the different fertilization schemes. The lowest yields were obtained in drought or waterlogging years, which were 44.7–58.5% of the yields in years with normal precipitation. It also appeared that the deficits of N, P and K were greater in the years with proper precipitation than those in arid or flood years, because more production was removed from the field. Soil total N decreased significantly when treated with mineral fertilizer or recycled manure alone. The maximum deficit of soil total N was observed in control treatment (557 kg ha−1) from 1990 to 2005. The N treatment resulted in a significant negative balance of P, due to the high yield of the crop in response to applied N. The application of NP or N to soils resulted in a greater negative K balance than that of the control. The greatest negative balance of total P and available P were obtained under the control and N treatment, and the highest deficit of soil total K and exchangeable K were obtained under NP treatment. We found that the rate of 150 kg N ha−1 year−1 was inadequate for maintaining soil N balance, and amendment of soil with organic source could not stop the loss of soil P and K. The applying rates of 150 kg N ha−1 year−1, 25 kg P ha−1 year−1, and 60 kg K ha−1 year−1 combined with 2–3 t ha−1 organic manure were recommended to maintain soil fertility level. The nitrogen use efficiency (NUE) was greatly improved in the years with proper precipitation and balanced fertilization. Higher NUE and grain yields were achieved under NPK and NPKM treatments in years with normal precipitation. The results clearly demonstrated that both organic and mineral fertilizers were needed to increase crop production, improve NUE and maintain soil fertility level.  相似文献   

15.
Information on fertilizer response in cassava in Africa is scarce. We conducted a series of on-farm and on-station trials in two consecutive years to quantify yield responses of cassava to mineral fertilizer in Kenya and Uganda and to evaluate factors governing the responses. Average unfertilized yields ranged from 4.2 to 25.7 t ha−1 between sites and years. Mineral fertilizer use increased yields significantly, but response to fertilizer was highly variable (−0.2 to 15.3 t ha−1). Average yield response per kg applied nutrient was 37, 168 and 45 and 106, 482 and 128 kg fresh yield per kg of applied N, P and K, respectively in 2004 and 2005. Fertilizer response was governed by soil fertility, rainfall and weed management, but was not influenced by variety, pest and disease pressure and harvest age. Relative N and K yields were positively correlated to SOC and exchangeable K, while response to fertilizer decreased on more fertile soils. Still, fertilizer response varied widely on low fertility soils (e.g. on soils with <10 g kg−1 SOC, responses ranged from −8.6 to 24.4 t ha−1), indicating strong interactions between factors governing fertilizer response. Response to fertilizer was reduced if total rainfall <1,500 mm or rainfall from 0 to 3 months after planting <400 mm. Fertilizer application promoted plant growth and resulted in a better soil coverage and reduced weed competition. Yields in fertilized fields were independent of weed management, unless growing conditions were unfavourable.  相似文献   

16.
An understanding of the dynamics of soil organic carbon (SOC) as affected by farming practices is imperative for maintaining soil productivity and also for restraining global warming by CO2 evolution. Results of a long-term (30 year) experiment in the Indian Himalayas under rainfed soybean (Glycine max L.)—wheat (Triticum aestivum L.) rotation was analyzed to determine the influence of mineral fertilizer and farmyard manure (FYM) application at 10 Mg ha−1 on SOC and total soil nitrogen (TSN) stocks and distribution within different aggregate size fractions. Fertilizers (NP, NK and NPK) and FYM in combination with N or NPK were applied before the soybean crop every year and no nutrient was applied before the wheat crop. Results showed that addition of FYM with N or NPK fertilizers increased SOC and TSN contents. The overall gain in SOC in the 0- to 45-cm soil depth interval in the plots under NPK + FYM treatment over NPK was 17.18 Mg C ha−1 in 30 year. The rate of conversion of input C to SOC was about 19% of each additional Mg C input per hectare. SOC content in large size aggregates was greater than in smaller size aggregates, and declined with decreased aggregate size. Thus, long-term soybean–wheat rotation in a sandy loam soil of the Indian Himalayas sequestered carbon and nitrogen. Soil organic C and TSN sequestration in the 0.25- to 0.1-mm size fraction is an ideal indicator of long-term C and N sequestration, since this fraction retained maximum SOC/TSN stock.  相似文献   

17.
Participatory on-farm trials were conducted for three seasons to assess the benefits of small rates of manure and nitrogen fertilizer on maize grain yield in semi-arid Tsholotsho, Zimbabwe. Two farmer resource groups conducted trials based on available amounts of manure, 3 t ha−1 (low resource group) and 6 t ha−1 (high resource group). Maize yields varied between 0.15 t ha−1 and 4.28 t ha−1 and both absolute yields and response to manure were strongly related to rainfall received across seasons (P < 0.001). The first two seasons were dry while the third season received above average rainfall. Maize yields within the seasons were strongly related to N applied (R 2 = 0.77 in season 1, and R 2 = 0.88 and 0.83 in season 3) and other beneficial effects of manure, possibly availability of cations and P. In the 2001–2002 season (total rainfall 478 mm), application of 3 and 6 t ha−1 of manure in combination with N fertilizer increased grain yield by about 0.14 and 0.18 t ha−1, respectively. The trend was similar for the high resource group in 2002–2003 although the season was very dry (334 mm). In 2003–2004, with good rainfall (672 mm), grain yields were high even for the control plots (average 1.2 and 2.7 t ha−1). Maize yields due to manure applications at 3 and 6 t ha−1 were 1.96 and 3.44 t ha−1, respectively. Application of 8.5 kg N ha−1 increased yields to 2.5 t ha−1 with 3 t ha−1 of manure, and to 4.28 t ha−1 with 6 t ha−1 of manure. In this area farmers do not traditionally use either manure or fertilizer on their crops, but they actively participated in this research during three consecutive seasons and were positive about using the outcomes of the research in future. The results showed that there is potential to improve livelihoods of smallholder farmers through the use of small rates of manure and N under semi-arid conditions.  相似文献   

18.
Different fields within a farm have been observed to have different soil fertility status and this may affect the response of a maize crop to applied N, P, and K fertiliser. A limiting nutrient trial was carried out at six farms each, in three districts of Western Kenya. In each of the farms, the following treatments were laid out in three fields with different soil fertility status at different distances from the homestead (close, mid-distance, remote fields): no inputs, application of NPK, NP, NK, or PK fertiliser (urea, triple super phosphate, KCl) to maize. Total soil N decreased at all sites with distance to the homestead (from 1.30 to 1.06 g kg−1), as did Olsen-P (from 10.5 to 2.3 mg kg−1). Grain yields in the no-input control plots reflected this decrease in soil fertility status with distance to the homestead (from 2.59 to 1.59 t ha−1). In the NPK treatments, however, this difference between field types disappeared (from 3.43 to 3.98 t ha−1), indicating that N and P are the major limiting nutrients in the target areas. Response to applied N was related to the soil total N content in Aludeka and Shinyalu, but not in Emuhaia, probably related to the high use of partially decomposed organic inputs with limited N availability. Consequently, response to applied N decreased with distance to the homestead in Aludeka (from 0.95 kg kg−1 relative yield to 0.55 kg kg−1) and Shinyalu (from 0.76 kg kg−1 to 0.47 kg kg−1), but not in Emuhaia (from 0.75 kg kg−1 to 0.68 kg kg−1). Response to applied P was related to the soil Olsen-P content at all sites. While for farms with a relatively high Olsen-P gradient, response to applied P decreased with distance to the homestead (from 0.99 kg kg−1 to 0.68 kg kg−1), large variability in Olsen-P gradients across field types among farms within a specific site often masked clear differences in response to P between field types for a specific site. Clear scope for field-specific fertiliser recommendations exists, provided these are based on local soil knowledge and diagnosis. Scenario analysis, using farm-scale modelling tools, could assist in determining optimum allocation strategies of scarcely available fertiliser for maximum fertiliser use efficiency.  相似文献   

19.
Crop production in sub-Saharan Africa is constrained by numerous factors including frequent droughts and periods of moisture stress, low soil fertility, and restricted access to mineral fertilisers. A 2 year (2005/6 and 2006/7) field study was conducted in Shurugwi district, central Zimbabwe, to determine the effects of different nutrient resources and two tillage practices on the grain yield of maize (Zea mays L.) and soybean (Glycine max (L.) Merr). Six nutrient resource treatments (control, pit-stored manure, leaf litter, anthill soil, mineral fertiliser, mineral fertiliser plus pit-stored manure) were combined with two tillage practices (conventional tillage and post-emergence tied ridging). Basal fertilisation was done with 0 kg ha−1 as control, 240 kg ha−1 PKS fertiliser, 18 t ha−1 manure, 10 t ha−1 manure plus 240 kg ha−1 PKS fertiliser, 35 t ha−1 leaf litter, 52 t ha−1 anthill soil. About 60 kg N/ha was applied to fertiliser only and fertiliser plus manure treatments as top dressing in the form of ammonium nitrate (34.5%N). A split-plot design was used with nutrient resource as the main plot and tillage practice as the subplot, and five farmers’ fields were used as replicates. Grain yield was determined at physiological maturity (140 and 126 days after planting for maize and soybean, respectively) and adjusted to 12.5% moisture content for maize and 11% for soybean. In the first season (2005/06), addition of different nutrient resources under conventional tillage increased (P < 0.05) maize grain yield by 102–450%, with leaf litter and manure plus fertiliser treatments, giving the lowest (551 kg ha−1) and highest (3,032 kg ha−1) increments, respectively, compared to the control. For each treatment, tied-ridging further increased maize grain yield. For example, for leaf litter, tied-ridging further increased grain yield by 96% indicating the importance of integrating nutrient and water management practices in semi-arid areas where moisture stress is frequent. Despite the low rainfall and extended dry spells in the second season, addition of the different nutrient resources still increased yield which was further increased by tied-ridging in most treatments. Besides providing grain, soybean had higher residual effects on the following maize crop compared to Crotalaria gramiana, a green manure. It was concluded that the highest benefits of tied-ridging, in terms of grain yield, were realised when cattle manure was combined with mineral fertiliser, both of which are available to resource-endowed households. Besides marginally increasing yield, leaf litter and anthill which represent resources that can be accessed by very poor households, have a positive effect of the soil chemical environment.  相似文献   

20.
On-farm runoff plots were established during 2004 and monitored for 4 years in the Pokhare Khola watershed (Nepal) in a completely randomized design with four replications of each three treatments: traditional Farmer Practice (FP) (Zea maysEleusine coracana), Reduced Tillage (RT; Z. maysVigna ungeuculata), and Commercial Vegetable with double dose of farm yard manure (CV; Z. maysCapsicum species) to evaluate treatment effects on soil nutrient losses, nutrient balances and crop income on Bari land (rainfed terraces). Nutrient removal due to crop harvest was found to be significantly higher than nutrient loss through soil erosion, and CV treatment exhibited a significantly higher N uptake (123 kg ha−1 year−1) through crop harvest than other treatments. Moreover, the CV treatment produced significantly higher income per unit area of Bari land than the other treatments. Soil organic carbon and major nutrients losses (NPK) through soil erosion were minimal [25.5 kg ha−1 year−1 soil organic carbon (SOC) and 5.6:0.02:0.12 kg ha−1 year−1 nitrogen (N), phosphorus (P), potassium (K), respectively]. Result showed that no nutrients were lost through leaching. Nutrient losses due to soil erosion and runoff were lower than previously reported in the Middle Mountain region, indicating a need to re-evaluate the soil erosion and nutrient loss problems in this region. Interventions such as reduced tillage and double dose of FYM with vegetable production were found to be effective in maintaining soil fertility and increasing farm income compared to the traditional maize-millet production system. The nutrient balance calculations suggest that integrated nutrient management techniques such as residue incorporation and application of FYM with a minimum application of chemical fertilizer are potentially sustainable production approaches for the Mid-hills of Nepal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号