首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper, we propose a novel Fast Affinity Propagation clustering approach (FAP). FAP simultaneously considers both local and global structure information contained in datasets, and is a high-quality multilevel graph partitioning method that can implement both vector-based and graph-based clustering. First, a new Fast Sampling algorithm (FS) is proposed to coarsen the input sparse graph and choose a small number of final representative exemplars. Then a density-weighted spectral clustering method is presented to partition those exemplars on the global underlying structure of data manifold. Finally, the cluster assignments of all data points can be achieved through their corresponding representative exemplars. Experimental results on two synthetic datasets and many real-world datasets show that our algorithm outperforms the state-of-the-art original affinity propagation and spectral clustering algorithms in terms of speed, memory usage, and quality on both vector-based and graph-based clustering.  相似文献   

2.
以密度敏感距离作为相似性测度,结合近邻传播聚类算法和谱聚类算法,提出了一种密度敏感的层次化聚类算法。算法以密度敏感距离为相似度,多次应用近邻传播算法在数据集中选取一些“可能的类代表点”;用谱聚类算法将“可能的类代表点”再聚类得到“最终的类代表点”;每个数据点根据其类代表点的类标签信息找到自己的类标签。实验结果表明,该算法在处理时间、内存占用率和聚类错误率上都优于传统的近邻传播算法和谱聚类算法。  相似文献   

3.
As a novel clustering method, affinity propagation (AP) clustering can identify high-quality cluster centers by passing messages between data points. But its ultimate cluster number is affected by a user-defined parameter called self-confidence. When aiming at a given number of clusters due to prior knowledge, AP has to be launched many times until an appropriate setting of self-confidence is found. K-AP algorithm overcomes this disadvantage by introducing a constraint in the process of message passing to exploit the immediate results of K clusters. The key to K-AP clustering is constructing a suitable similarity matrix, which can truly reflect the intrinsic structure of the dataset. In this paper, a density-adaptive similarity measure is designed to describe the relations between data points more reasonably. Meanwhile, in order to solve the difficulties faced by K-AP algorithm in high-dimensional data sets, we use the dimension reduction method based on spectral graph theory to map the original data points to a low-dimensional eigenspace and propose a density-adaptive AP clustering algorithm based on spectral dimension reduction. Experiments show that the proposed algorithm can effectively deal with the clustering problem of datasets with complex structure and multiple scales, avoiding the singularity problem caused by the high-dimensional eigenvectors. Its clustering performance is better than AP clustering algorithm and K-AP algorithm.  相似文献   

4.
基于MapReduce的分布式近邻传播聚类算法   总被引:2,自引:0,他引:2  
随着信息技术迅速发展,数据规模急剧增长,大规模数据处理非常具有挑战性.许多并行算法已被提出,如基于MapReduce的分布式K平均聚类算法、分布式谱聚类算法等.近邻传播(affinity propagation,AP)聚类能克服K平均聚类算法的局限性,但是处理海量数据性能不高.为有效实现海量数据聚类,提出基于MapReduce的分布式近邻传播聚类算法——DisAP.该算法先将数据点随机划分为规模相近的子集,并行地用AP聚类算法稀疏化各子集,然后融合各子集稀疏化后的数据再次进行AP聚类,由此产生的聚类代表作为所有数据点的聚类中心.在人工合成数据、人脸图像数据、IRIS数据以及大规模数据集上的实验表明:DisAP算法对数据规模有很好的适应性,在保持AP聚类效果的同时可有效缩减聚类时间.  相似文献   

5.
Affinity propagation (AP) is a recently proposed clustering algorithm, which has been successful used in a lot of practical problems. Although effective in finding meaningful clustering solutions, a key disadvantage of AP is its efficiency, which has become the bottleneck when applying AP for large-scale problems. In the literature, most of the methods proposed to improve the efficiency of AP are based on implementing the message-passing on a sparse similarity matrix, while neither the decline in effectiveness nor the improvement in efficiency is theoretically analyzed. In this paper, we propose a two-stage fast affinity propagation (FastAP) algorithm. Different from previous work, the scale of the similarity matrix is first compressed by selecting only potential exemplars, then further reduced by sparseness according to k nearest neighbors. More importantly, we provide theoretical analysis, based on which the improvement of efficiency in our method is controllable with guaranteed clustering performance. In experiments, two synthetic data sets, seven publicly available data sets, and two real-world streaming data sets are used to evaluate the proposed method. The results demonstrate that FastAP can achieve comparable clustering performances with the original AP algorithm, while the computational efficiency has been improved with a several-fold speed-up on small data sets and a dozens-of-fold on larger-scale data sets.  相似文献   

6.
张熠玲  杨燕  周威  欧阳小草  胡节 《软件学报》2022,33(4):1373-1389
谱聚类是聚类分析中极具代表性的方法之一,由于其对数据结构没有太多假设要求,受到了研究者们的广泛关注.但传统的谱聚类算法通常受到谱嵌入的可扩展性和泛化性的限制,即:无法应对大规模设置和复杂数据分布.为克服以上缺陷,旨在引入深度学习框架提升谱聚类的泛化能力与可扩展能力,同时,结合多视图学习挖掘数据样本的多样性特征,从而提出...  相似文献   

7.
贾洪杰  丁世飞  史忠植 《软件学报》2015,26(11):2836-2846
谱聚类将聚类问题转化成图划分问题,是一种基于代数图论的聚类方法.在求解图划分目标函数时,一般利用Rayleigh熵的性质,通过计算Laplacian矩阵的特征向量将原始数据点映射到一个低维的特征空间中,再进行聚类.然而在谱聚类过程中,存储相似矩阵的空间复杂度是O(n2),对Laplacian矩阵特征分解的时间复杂度一般为O(n3),这样的复杂度在处理大规模数据时是无法接受的.理论证明,Normalized Cut图聚类与加权核k-means都等价于矩阵迹的最大化问题.因此,可以用加权核k-means算法来优化Normalized Cut的目标函数,这就避免了对Laplacian矩阵特征分解.不过,加权核k-means算法需要计算核矩阵,其空间复杂度依然是O(n2).为了应对这一挑战,提出近似加权核k-means算法,仅使用核矩阵的一部分来求解大数据的谱聚类问题.理论分析和实验对比表明,近似加权核k-means的聚类表现与加权核k-means算法是相似的,但是极大地减小了时间和空间复杂性.  相似文献   

8.
Semi-supervised graph clustering: a kernel approach   总被引:6,自引:0,他引:6  
Semi-supervised clustering algorithms aim to improve clustering results using limited supervision. The supervision is generally given as pairwise constraints; such constraints are natural for graphs, yet most semi-supervised clustering algorithms are designed for data represented as vectors. In this paper, we unify vector-based and graph-based approaches. We first show that a recently-proposed objective function for semi-supervised clustering based on Hidden Markov Random Fields, with squared Euclidean distance and a certain class of constraint penalty functions, can be expressed as a special case of the weighted kernel k-means objective (Dhillon et al., in Proceedings of the 10th International Conference on Knowledge Discovery and Data Mining, 2004a). A recent theoretical connection between weighted kernel k-means and several graph clustering objectives enables us to perform semi-supervised clustering of data given either as vectors or as a graph. For graph data, this result leads to algorithms for optimizing several new semi-supervised graph clustering objectives. For vector data, the kernel approach also enables us to find clusters with non-linear boundaries in the input data space. Furthermore, we show that recent work on spectral learning (Kamvar et al., in Proceedings of the 17th International Joint Conference on Artificial Intelligence, 2003) may be viewed as a special case of our formulation. We empirically show that our algorithm is able to outperform current state-of-the-art semi-supervised algorithms on both vector-based and graph-based data sets.  相似文献   

9.
谱聚类将数据聚类问题转化成图划分问题,通过寻找最优的子图,对数据点进行聚类。谱聚类的关键是构造合适的相似矩阵,将数据集的内在结构真实地描述出来。针对传统的谱聚类算法采用高斯核函数来构造相似矩阵时对尺度参数的选择很敏感,而且在聚类阶段需要随机确定初始的聚类中心,聚类性能也不稳定等问题,本文提出了基于消息传递的谱聚类算法。该算法采用密度自适应的相似性度量方法,可以更好地描述数据点之间的关系,然后利用近邻传播(Affinity propagation,AP)聚类中“消息传递”机制获得高质量的聚类中心,提高了谱聚类算法的性能。实验表明,新算法可以有效地处理多尺度数据集的聚类问题,其聚类性能非常稳定,聚类质量也优于传统的谱聚类算法和k-means算法。  相似文献   

10.
针对多核子空间谱聚类算法没有考虑噪声和关系图结构的问题,提出了一种新的联合低秩稀疏的多核子空间聚类算法(JLSMKC)。首先,通过联合低秩与稀疏表示进行子空间学习,使关系图具有低秩和稀疏结构属性;其次,建立鲁棒的多核低秩稀疏约束模型,用于减少噪声对关系图的影响和处理数据的非线性结构;最后,通过多核方法充分利用共识核矩阵来增强关系图质量。7个数据集上的实验结果表明,所提算法JLSMKC在聚类精度(ACC)、标准互信息(NMI)和纯度(Purity)上优于5种流行的多核聚类算法,同时减少了聚类时间,提高了关系图块对角质量。该算法在聚类性能上有较大优势。  相似文献   

11.
丁世飞  贾洪杰  史忠植 《软件学报》2014,25(9):2037-2049
面对结构复杂的数据集,谱聚类是一种灵活而有效的聚类方法,它基于谱图理论,通过将数据点映射到一个由特征向量构成的低维空间,优化数据的结构,得到令人满意的聚类结果.但在谱聚类的过程中,特征分解的计算复杂度通常为O(n3),限制了谱聚类算法在大数据中的应用.Nyström扩展方法利用数据集中的部分抽样点,进行近似计算,逼近真实的特征空间,可以有效降低计算复杂度,为大数据谱聚类算法提供了新思路.抽样策略的选择对Nyström扩展技术至关重要,设计了一种自适应的Nyström采样方法,每个数据点的抽样概率都会在一次采样完成后及时更新,而且从理论上证明了抽样误差会随着采样次数的增加呈指数下降.基于自适应的Nyström采样方法,提出一种适用于大数据的谱聚类算法,并对该算法的可行性和有效性进行了实验验证.  相似文献   

12.
In this paper, we present a locality-constrained nonnegative robust shape interaction (LNRSI) subspace clustering method. LNRSI integrates the local manifold structure of data into the robust shape interaction (RSI) in a unified formulation, which guarantees the locality and the low-rank property of the optimal affinity graph. Compared with traditional low-rank representation (LRR) learning method, LNRSI can not only pursuit the global structure of data space by low-rank regularization, but also keep the locality manifold, which leads to a sparse and low-rank affinity graph. Due to the clear block-diagonal effect of the affinity graph, LNRSI is robust to noise and occlusions, and achieves a higher rate of correct clustering. The theoretical analysis of the clustering effect is also discussed. An efficient solution based on linearized alternating direction method with adaptive penalty (LADMAP) is built for our method. Finally, we evaluate the performance of LNRSI on both synthetic data and real computer vision tasks, i.e., motion segmentation and handwritten digit clustering. The experimental results show that our LNRSI outperforms several state-of-the-art algorithms.  相似文献   

13.
Multi-way partitioning of an undirected weighted graph where pairwise similarities are assigned as edge weights, provides an important tool for data clustering, but is an NP-hard problem. Spectral relaxation is a popular way of relaxation, leading to spectral clustering where the clustering is performed by the eigen-decomposition of the (normalized) graph Laplacian. On the other hand, semidefinite relaxation, is an alternative way of relaxing a combinatorial optimization, leading to a convex optimization. In this paper we employ a semidefinite programming (SDP) approach to the graph equipartitioning for clustering, where sufficient conditions for strong duality hold. The method is referred to as semidefinite spectral clustering, where the clustering is based on the eigen-decomposition of the optimal feasible matrix computed by SDP. Numerical experiments with several data sets, demonstrate the useful behavior of our semidefinite spectral clustering, compared to existing spectral clustering methods.  相似文献   

14.
Weighted graph cuts without eigenvectors a multilevel approach   总被引:1,自引:0,他引:1  
A variety of clustering algorithms have recently been proposed to handle data that is not linearly separable; spectral clustering and kernel k-means are two of the main methods. In this paper, we discuss an equivalence between the objective functions used in these seemingly different methods--in particular, a general weighted kernel k-means objective is mathematically equivalent to a weighted graph clustering objective. We exploit this equivalence to develop a fast, high-quality multilevel algorithm that directly optimizes various weighted graph clustering objectives, such as the popular ratio cut, normalized cut, and ratio association criteria. This eliminates the need for any eigenvector computation for graph clustering problems, which can be prohibitive for very large graphs. Previous multilevel graph partitioning methods, such as Metis, have suffered from the restriction of equal-sized clusters; our multilevel algorithm removes this restriction by using kernel k-means to optimize weighted graph cuts. Experimental results show that our multilevel algorithm outperforms a state-of-the-art spectral clustering algorithm in terms of speed, memory usage, and quality. We demonstrate that our algorithm is applicable to large-scale clustering tasks such as image segmentation, social network analysis and gene network analysis.  相似文献   

15.
To cluster web documents, all of which have the same name entities, we attempted to use existing clustering algorithms such as K-means and spectral clustering. Unexpectedly, it turned out that these algorithms are not effective to cluster web documents. According to our intensive investigation, we found that clustering such web pages is more complicated because (1) the number of clusters (known as ground truth) is larger than two or three clusters as in general clustering problems and (2) clusters in the data set have extremely skewed distributions of cluster sizes. To overcome the aforementioned problem, in this paper, we propose an effective clustering algorithm to boost up the accuracy of K-means and spectral clustering algorithms. In particular, to deal with skewed distributions of cluster sizes, our algorithm performs both bisection and merge steps based on normalized cuts of the similarity graph G to correctly cluster web documents. Our experimental results show that our algorithm improves the performance by approximately 56% compared to spectral bisection and 36% compared to K-means.  相似文献   

16.
陶洋  鲍灵浪  胡昊 《计算机工程》2021,47(4):56-61,67
通过子空间聚类可获得高维数据的潜在子空间结构,但现有算法不能同时揭示数据全局低秩结构和局部稀疏结构特性,致使聚类性能受限.提出一种结构约束的对称低秩表示算法用于子空间聚类.在目标函数中添加结构约束和对称约束来限制低秩表示解的结构,构造一个加权稀疏和对称低秩的亲和度图,在此基础上,结合谱聚类方法实现高效的子空间聚类.实验...  相似文献   

17.
甘月松  陈秀宏  陈晓晖 《计算机科学》2015,42(1):232-235,267
Affinity Propagation(AP)聚类算法将所有数据点作为潜在的聚类中心,在相似度矩阵的基础上通过消息传递进行聚类.与传统聚类方法相比,对于大规模数据集,AP是一种快速、有效的聚类方法.但是AP算法在聚类结构复杂的(非团状)数据集上得到的效果并不是很好.因此,在AP的基础上加入一个merge过程,将AP算法改进为M-AP算法,可以有效地解决这种问题.而当样本数目比较大时,将CVM压缩算法融入其中,可以有效地解决大样本问题.  相似文献   

18.
面对复杂信息环境下的数据预处理需求,提出了一种可以处理混合属性数据集的双重聚类方法。这种双重聚类方法由双重近邻无向图的构造算法或其改进算法,基于分离集合并的双重近邻图聚类算法、基于宽度优先搜索的双重近邻图聚类算法、或基于深度优先搜索的双重近邻图聚类算法来实现。通过人工数据集和UCI标准数据集的仿真实验,可以验证,尽管这三个聚类算法所采用的搜索策略不同,但最终的结果是一致的。仿真实验结果还表明,对于一些具有明显聚类分布结构且无近邻噪声干扰的数据集,该方法经常能取得比K-means算法和AP算法更好的聚类精度,从而说明这种双重聚类方法具有一定的有效性。为进一步推广并在实际中发掘出该方法的应用价值,最后给出了一点较有价值的研究展望。  相似文献   

19.
王一宾    李田力  程玉胜   《智能系统学报》2019,14(5):966-973
标记分布是一种新的学习范式,现有算法大多数直接使用条件概率建立参数模型,未充分考虑样本之间的相关性,导致计算复杂度增大。基于此,引入谱聚类算法,通过样本之间相似性关系将聚类问题转化为图的全局最优划分问题,进而提出一种结合谱聚类的标记分布学习算法(label distribution learning with spectral clustering,SC-LDL)。首先,计算样本相似度矩阵;然后,对矩阵进行拉普拉斯变换,构造特征向量空间;最后,通过K-means算法对数据进行聚类建立参数模型,预测未知样本的标记分布。与现有算法在多个数据集上的实验表明,本算法优于多个对比算法,统计假设检验进一步说明算法的有效性和优越性。  相似文献   

20.
Data co-clustering refers to the problem of simultaneous clustering of two data types. Typically, the data is stored in a contingency or co-occurrence matrix C where rows and columns of the matrix represent the data types to be co-clustered. An entry C ij of the matrix signifies the relation between the data type represented by row i and column j. Co-clustering is the problem of deriving sub-matrices from the larger data matrix by simultaneously clustering rows and columns of the data matrix. In this paper, we present a novel graph theoretic approach to data co-clustering. The two data types are modeled as the two sets of vertices of a weighted bipartite graph. We then propose Isoperimetric Co-clustering Algorithm (ICA)—a new method for partitioning the bipartite graph. ICA requires a simple solution to a sparse system of linear equations instead of the eigenvalue or SVD problem in the popular spectral co-clustering approach. Our theoretical analysis and extensive experiments performed on publicly available datasets demonstrate the advantages of ICA over other approaches in terms of the quality, efficiency and stability in partitioning the bipartite graph.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号