首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The feasibility of using a cobalt-molybdenum (Co-Mo) sulfide catalyst that was prepared from a commercial Co-Mo oxide catalyst for the production of elemental sulfur from hydrogen sulfide (H2S) and carbon dioxide (CO2) in a packed bed catalytic reactor was studied. It was demonstrated that the desired sulfide catalyst could be prepared by first reducing, then sulphiding the corresponding oxide. The results showed that the prepared catalyst was capable of producing elemental sulfur from the thermal decomposition of H2S in the presence of CO2 over a temperature range of 465-700°C and at atmospheric pressure. A specific rate coefficient was calculated as well as the Arrhenius parameters for the non-equilibrated reaction. The H2S decomposition reaction was found to be a second order reaction and have an activation energy of 114.4kJ/mol(27.3kcal/mol).  相似文献   

2.
ZEC(zero emission coal)系统中,粗煤气进入碳酸化/重整炉前需先脱除H2S,提出利用经过多次碳酸化/煅烧捕集CO2循环的煅烧石灰石(CaO)脱除H2S,并研究循环碳酸化/煅烧次数、硫化温度、H2S浓度和微观结构对循环CaO硫化特性的影响。结果表明,多次循环碳酸化/煅烧捕集CO2后CaO仍具有较高H2S吸收性能。前20次循环,CaO硫化转化率随循环次数增加迅速降低;20次循环后,CaO硫化转化率缓慢下降。硫化120 min后,未循环CaO的硫化转化率接近100%,而经历1、20和100次循环后CaO的硫化转化率分别为94%、81%和74%。H2S浓度对循环CaO硫化性能影响较大。硫化温度(800~1000℃)对循环CaO的硫化性能影响较小,最佳硫化温度为900℃。随循环次数增加,CaO颗粒发生高温烧结,导致比表面积降低和20~150 nm内孔隙减少,而这是与H2S吸收密切相关的孔隙,导致CaO硫化转化率降低。  相似文献   

3.
The catalytic reforming of methane by steam is an important industrial process that produces H2, CO and CO2, thus chemically transforming natural gas, coal gas and light hydrocarbon feedstocks to synthesis gas or hydrogen fuel. Methane-steam reforming may consist of a number of reactions depending on the reforming catalyst, operating conditions and feedstock composition, The typical industrially desirable reactions are the reverse of methanation (CH4 + H2O = CO + 3H2) and the water-gas shift (CO + H2O = CO2 + H2). Both reactions are equilibrium limited and the composition of the mixture that exits the reformer is in accordance with the one calculated thermodynarmically. Removal of reaction products at the reactor exit by means of selective membrane permeation can offer improved CH4 conversions and CO2 and H2 yields, assuming the subsequent utilization of the reject streams by a second methane-steam reformer. We numerically investigated the feasibility of a system of two tubular methane-steam reformers, in series with an intermediate permselective polyimide membrane permeator, as means of improving the overall CH4 conversion and the H2, CO2 yields over conventional methane-steam reforming equilibrium reaction-separation schemes that are currently in industrial practice. The unique feature of the permselective polyimide separator is the simultaneous removal of H2 and CO2 versus CH4 and CO from the reformed streams. The utilized 6FDA-3,3', 5,5'-TMB aromatic polyimide was reportedly characterized [10] and found to exhibit superior permselective properties compared with other polyimides of the same or different dianhydride sequence. Conversion and yield of the designed reactor-membrane permeator reforming system can be maximized by optimizing the permselective properties of the membrane material and the design variables of the reactors and the permeator. Product recovery and purity in the permeate stream need to be compromised to overall enhance methane conversion and product yield. The operating variables that were varied to investigate their effect on the magnitude of conversion and yield included the inlet pressure of the first reformer, the temperature of both reformers, and the permeator dimensionless Pe' number (variation of the first two variables results to a drastic change in the composition of the reformed stream that enters into the permeator). The numerical results show that the new reformer-membrane permeator cascade process can be more effective (it can offer increased CH4 conversions and H2, CO2 yields) than conventional equilibrium methane-steam reforming reaction-separation processes currently in practice.  相似文献   

4.
The main disadvantage of the Claus process is that by introducing air as oxidant a large volume of tail gas is produced. This must be treated to reduce atmospheric emissions of sulfur-containing gases. The costs of the tail-gas unit are a significant fraction of the total capital and operating costs for sulfur recovery. A new process uses thermal decomposition of hydrogen sulfide in the presence of carbon dioxide instead of air oxidation. The products of this reaction are hydrogen, carbon monoxide, elemental sulfur, water vapor and carbonyl sulfide. Carbonyl sulfide is easily converted to H2S and C02 by liquid- or vapor-phase hydrolysis. Unreacted H2S and C02 are recovered by absorption and recycled to the reactor. Since no air is introduced, there is no tail gas and the tail-gas unit is eliminated, giving a substantial reduction in capital investment. The concentrations of sulfur-containing gases in the product streams depend only on the operation of the absorber and stripper units and can be controlled to very low levels by increasing stripper boil-up. Process operating costs depend on the level of sulfur recovery required and can also be much lower than those of the modified Claus Process.

The process chemistry depends on a shift in the equilibrium of H2S decomposition caused by reaction of hydrogen with C02 by the reverse of the water-gas-shift reaction. Catalysts for this chemistry have been identified. Reactor conversion is further improved by rapid cooling of the reactor effluent gas. Other aspects of process design and operation confer further advantages with respect to the Claus process; however, the process equipment used is similar to that used in a Claus plant. Retrofit of existing plant to the new technology can therefore be considered.  相似文献   

5.
Water formed during hydrotreating of oxygen-containing feeds has been found to affect the performance of sulphided catalysts in different ways. The effect of water on the activity of sulphided NiMo/γ-Al2O3 and CoMo/γ-Al2O3 catalysts in hydrodeoxygenation (HDO) of aliphatic esters was investigated in a tubular reactor by varying the amount of water in the feed. In additional experiments, H2S was added to the feed, alone and simultaneously with water.

Under the same conditions, the NiMo catalyst exhibited a higher activity than the CoMo catalyst. The ester conversions decreased with increase in the amount of added water. When H2S and water were added simultaneously, the conversion increased to the same level as without water addition on the NiMo catalyst and reached a higher value on the CoMo catalyst. The conversions were highest, however, when only H2S was added. Unfortunately, the conversions decreased with time under all conditions. On both catalysts, the total yield of the C7 and C6 hydrocarbons decreased with the amount of added water, while the concentrations of the oxygen-containing intermediates increased. The presence of H2S improved the total hydrocarbon yield and shifted the main products towards the C6 hydrocarbons. Thus, the addition of H2S effectively compensated the inhibition by water.  相似文献   


6.
将H2S和CO2混合酸气一步转化制合成气,既实现了二者无害化处理,又生产出合成气,是一条理想的废气资源化利用新路线。由于分子结构稳定,在常规条件下因受热力学平衡限制,二者转化率极低。而在低温等离子体中,H2S和CO2可被激发为高活性物种来参与反应。研究了具有不同Si/Al摩尔比的ZSM-5催化剂与低温等离子体结合实现H2S-CO2一步高选择性制合成气,显著提高了H2S-CO2转化性能。考察了ZSM-5催化剂中Si/Al比和低温等离子体放电条件等对反应的影响。其中,当Si/Al比为80时表现出最优催化性能,最高H2和CO产率分别达到56.1%和10.0%。对常规条件和低温等离子体氛围下的不同ZSM-5催化剂上CO2、H2S、CO、H2等化学吸脱附行为进行了对比研究,发现低温等离子体促进了催化剂对CO2、H2及CO分子的吸附活化,进而明显提升了H2S和CO2转化。  相似文献   

7.
The presence of a limited amount of H2S in H2-rich feed adversely affects the Pd-Cu membrane per-meation performance due to the sulphidization of the membrane surface. A theoretical model was proposed to pre-dict the S-tolerant performance of the Pd-Cu membranes in presence of H2S under the industrial water-gas-shift (WGS) reaction conditions. The ideas of surface coverage and competitive adsorption thermodynamics of H2S and H2 on Pd-Cu surface were introduced in the model. The surface sulphidization of the Pd-Cu membranes mainly de-pended on the pressure ratio of H2S to H2, temperature and S-adsorbed surface coverage, i.e., the occurrence of sulphidization on the surface was not directly related with the bulk compositions and structures [body centered cu-bic and face centered cubic (bcc or fcc)] of Pd-Cu alloy membranes because of the surface segregation phenomena. The resulting equilibrium equations for the H2S adsorption/sulphidization reactions were solved to calculate the pressure ratio of H2S to H2 over a wide range of temperatures. A validation of the model was performed through a comparison between lots of literature data and the model calculations over a rather broad range of operating condi-tions. An extremely good agreement was obtained in the different cases, and thus, the model can serve to guide the development of S-resistant Pd alloy membrane materials for hydrogen separation.  相似文献   

8.
The influence of H2S partial pressure over the catalytic activity of MoS2, supported on three different oxides: Al2O3, TiO2 and ZrO2, was studied in the hydrodesulfurization of dibenzothiophene (DBT). A complex inhibiting effect is observed and two orders of reaction relative to H2S were determined: −1/2 and 0, as a function of H2S partial pressure. The experimental results are in good agreement with the kinetic models whereby the DBT transformation takes place through a dihydrogenated intermediate (DH-DBT). The associated mechanism considers that the heterolytic dissociative adsorption of H2 and H2S occurs over an unsaturated Mo ion and over a stable sulfur ion.  相似文献   

9.
As a contribution to the development of a process for catalytic upgrading of tarry fuel gases, e.g. coke-oven gas, the conversion of naphthalene, benzene and methane on a nickel catalyst in the presence of H2 and H2O was studied. The experiments were performed in a tubular flow reactor (total pressure: 1.6 bar; residence time with respect to the empty reactor: 0.3 s; temperature: 400-950°C; and particle diameter of catalyst: 1.5 mm). The kinetic data were obtained by systematic variation of the reaction conditions.

At temperatures of more than 800°C, each hydrocarbon is cracked and converted with H2O to CO and H2. Soot formation does not occur at any temperature. In case of simultaneous conversion of all three hydrocarbons, competitive reactions have to be considered.

The rate of chemical reaction on the catalyst is substantially decreased in the presence of H2S. Nevertheless, in a reactor of industrial scale, H2S has only slight influence. The catalyst would be applied with a particle diameter of 19 mm (experiments: 1.5 mm), and the overall reaction rate of hydrocarbon conversion is significantly affected by gas film diffusion.  相似文献   


10.
The catalytic performance of some metal oxides in the selective oxidation of H2S in the stream containing water vapor and ammonia was investigated in this study. Among the catalysts tested, V2O5/SiO2 and Fe2O3/SiO2 catalyst showed good conversion of H2S with very low selectivity to undesired SO2. Hydrogen sulfide could be recovered as harmless solid products (elemental sulfur and various ammonium salts), and distribution of solid products was varied with types of catalyst and compositions of reactant. XRD and FT-IR analysis revealed that the salt was mixture of ammonium–sulfur–oxygen compounds. It was noteworthy that V2O5/SiO2 catalyst produced elemental sulfur and ammonium thiosulfate, and that elemental sulfur was principal product on Fe2O3/SiO2 catalyst. Small amount of ammonium sulfate was obtained with the Fe2O3/SiO2 catalyst. In order to elucidate the reaction path, the effects of O2/H2S ratio and concentration of NH3 and H2O are also studied with the V2O5/SiO2 catalyst.  相似文献   

11.
代斌  张春丽  康丽华  朱明远 《化工学报》2015,66(9):3476-3482
采用等体积浸渍法制备了1% AuCl3/AC催化剂,探究了硫化氢(H2S)为毒物对乙炔氢氯化反应中催化剂催化活性的影响及失活机理。催化活性测试结果表明,以H2S为毒物可导致乙炔氢氯化反应中的AuCl3/AC催化剂的失活,且是一个不可逆过程;程序升温还原(TPR)和X射线光电子能谱(XPS)分析结果表明,H2S的加入可有效地加快Au3+还原为Au0;透射电镜能谱(TEM-EDX)观测分析形成的Au-S化合物也可导致催化剂失活,即随着H2S量的增大,更多的Au3+被还原为Au0,且形成的Au-S化合物覆盖在活性位点,使有效的活性组分降低进而导致AuCl3/AC催化剂失活。  相似文献   

12.
Catalytic wet oxidation of H2S to sulfur on Fe/MgO catalyst   总被引:1,自引:0,他引:1  
The room temperature wet catalytic oxidation was conducted in a batch reactor with Fe/MgO catalyst. Fe/MgO catalyst was prepared by the dissolution–precipitation method. XRD and temperature-programmed reductions (TPR) indicate that Fe oxide in the Fe/MgO is finely dispersed in the MgO support. The high H2S removal capacities of Fe/MgO can be explained by the finely dispersed iron oxide MgO. The H2S removal capacities of Fe/MgO are dependent on oxygen partial pressure (1.0 g H2S/gcat in air and 2.6 g H2S/gcat in oxygen). The valence state analysis of Fe/MgO catalyst suggests that the H2S oxidation on Fe/MgO can occur by a redox couple reaction, reducing Fe3+ into Fe2+ by H2S and oxidizing Fe2+ to Fe3+ by O2.  相似文献   

13.
刘娜  宁平  李凯  梅毅  王驰  孙鑫  汤立红  宋辛  唐勰 《化工进展》2018,37(1):301-310
氰化氢(HCN)、羰基硫(COS)、二硫化碳(CS2)广泛共存于黄磷尾气、焦炉煤气、碳一化工等化工行业废气中,目前大多数研究局限于3种气体的单独脱除,3种气体同时脱除的研究鲜有报道,而3种气体的协同脱除势在必行。催化水解法能够将HCN转化成NH3,COS和CS2水解成H2S。NH3和H2S可以分别被催化氧化为N2及S,S可以回收利用。一步法实现HCN、COS和CS2的水解及水解产物NH3和H2S的催化氧化的催化剂开发是该技术的核心问题,本文针对近几年3种气体水解催化剂的相关研究成果进行了综述,包括负载型催化剂和非负载型催化剂,与此同时,针对水解产物NH3和H2S的催化氧化的协同净化技术进行了分析,旨在为后续3种气体同时催化水解及协同净化其水解产物催化剂的开发提供理论指导,为低温环境下协同催化水解HCN、COS和CS2,并利用原料气中的氧一步法净化水解产物技术的未来发展及应用提供参考。  相似文献   

14.
Low temperature steam reforming of methane mainly to hydrogen and carbon dioxide (CH4 + 2H2O → 4H2 + CO2) has been performed at 773 and 823 K over a commercial nickel catalyst in an equilibrium-shift reactor with an 11-μm thick palladium membrane (Mem-L) on a stainless steel porous metal filter. The methane conversion with the reactor is significantly higher than its equilibrium value without membrane due to the equilibrium-shift combined with separation of pure hydrogen through the membrane. The methane conversion in a reactor with an 8-μm membrane (Mem-H) is similar to that with Mem-L, although the hydrogen permeance through Mem-H is almost double of that through Mem-L. The amount of hydrogen separated in the reaction with Mem-H is significantly large, showing that the hydrogen separation overwhelms the hydrogen production because of the insufficient catalytic activity.  相似文献   

15.
In the partial oxidation of tar derived from the pyrolysis of cedar wood, the effect of H2S addition was investigated over non-catalyst, steam reforming Ni catalyst, and Rh/CeO2/SiO2 using a fluidized bed reactor. In the non-catalytic gasification, the product distribution was not influenced by the presence of H2S. Steam reforming Ni catalyst was effective for the tar removal without H2S addition, however, the addition of H2S deactivated drastically. In contrast, Rh/CeO2/SiO2 exhibited higher and more stable activity than the Ni catalyst even under the presence of high concentration of H2S (280 ppm). On the Ni catalyst, the adsorption of sulfur was observed by XPS and Ni species was oxidized during the partial oxidation of tar. In the case of Rh/CeO2/SiO2, the adsorption of sulfur was below the detection limit of XPS. This can be related to the self-cleaning of catalyst surface during the circulation in the fluidized bed reactor for the partial oxidation of tar derived from cedar pyrolysis.  相似文献   

16.
The resource utilization of hydrogen sulfide (H2S) is of great significance in natural gas chemical industry. Described herein have developed a novel method mediated in tertiary amine-functionalized ionic liquids (ILs) to convert H2S into mercaptan alcohols with enols. The effect of ILs, substrate scope, and regeneration experiments have been investigated. It is found that the conversion of 3-methyl-2-buten-1-ol by H2S can reach 52% with a 50% (mol) catalyst loading of bis(2-dimethylaminoethyl) ether methoxyacetate within 12 h at 90 ℃. The reaction mechanism was speculated based on theoretical calculation. Besides, a plausible reaction-separation-integrated strategy was further proposed. This work reveals an effective insight into the capture and catalytic conversion of H2S to high valuable mercaptan alcohol, which makes the utilization method of H2S resource universal and has the potentiality for industrial application.  相似文献   

17.
L. Ma  H. Verelst  G.V. Baron   《Catalysis Today》2005,105(3-4):729-2
A nickel-based catalytic filter material for the use in integrated high temperature removal of tars and particles from biomass gasification gas was tested in a broad range of parameters allowing the identification of the operational region of such a filter. Small-scale porous alumina filter discs, loaded with approximately 2.5 wt% Al2O3, 1.0 wt% Ni and 0.5 wt% MgO were tested with a particle free synthetic gasification gas with 50 vol% N2, 12 vol% CO, 10 vol% H2, 11 vol% CO2, 12 vol% H2O, 5 vol% CH4 and 0–200 ppm H2S, and the selected model tar compounds: naphthalene and benzene. At a typical face velocity of 2.5 cm/s, in the presence of H2S and at 900 °C, the conversion of naphthalene is almost complete and a 1000-fold reduction in tar content is obtained. Technically, it would be better to run the filter close to the exit temperature of the gasifier around 800–850 °C. At 850 °C, conversions of 99.0% could be achieved in typical conditions, but as expected, only 77% reduction in tars was achieved at 800 °C.

Conversion data can be reasonably well described with first order kinetics and a dominant adsorption inhibition of the Ni sites by H2S. The apparent activation energies obtained are similar to those reported by other investigators: 177 kJ/mol for benzene and 92 kJ/mol for naphthalene. The estimated heat of adsorption of H2S is 71 kJ/mol in the benzene experiments and 182 kJ/mol in the naphthalene experiments, which points at very strong adsorption of H2S. Good operation of the present material can hence only be guaranteed at temperatures above 830 °C mainly due to the strong deactivation by H2S at lower temperatures.  相似文献   


18.
Catalytic combustion of methane over Pd and Pt/SiO2/-Al2O3 membranes was studied in the temperature range 300–650 °C. Fuel and oxygen were fed at opposite membrane sides. In order to improve reactor controllability the -Al2O3 membranes were impregnated with SiO2 sol resulting to smaller pore size. Methane conversions up to 100% for the palladium membrane and up to 42% for the platinum membrane were achieved. The results indicated a transition from kinetic to mass transfer control within the temperature range investigated. This was accompanied by reduction of methane slip from tube to shell side with increasing temperature. CO and H2 were detected in the product gases of the palladium membrane. Their concentration could be reduced by applying a trans-membrane pressure difference. Low concentrations of CO were observed for the Pt/SiO2/-Al2O3 membrane, while no CO or H2 were detected for a Pd/-Al2O3 membrane operating in dead-end configuration.  相似文献   

19.
La2NiO4 tubular membranes of relative density over 92% were used to separate oxygen from air and facilitate the partial oxidation of methane to H2 and CO at 900 °C. When methane was fed into a tube of inner surface area 5.11 cm2 at a rate of 10.5 ml/min, methane throughput conversion was 89%, CO selectivity 96%, H2/CO ratio 1.5, and the equivalent oxygen flux was 6.8 ml/min. The surface of the La2NiO4 membrane exposed to CH4 decomposed into La2O3 and Ni, while the surface in contact with air remained almost unchanged. It is suggested that the conversion of methane in the membrane reactor involves the reforming of methane by the H2O and CO2 catalyzed by nickel.  相似文献   

20.
The direct synthesis of methanethiol, CH3SH, from CO and H2S was investigated using sulfided vanadium catalysts based on TiO2 and Al2O3. These catalysts yield high activity and selectivity to methanethiol at an optimized temperature of 615 K. Carbonyl sulfide and hydrogen are predominant products below 615 K, whereas above this temperature methane becomes the preferred product. Methanethiol is formed by hydrogenation of COS, via surface thioformic acid and methylthiolate intermediates. Water produced in this reaction step is rapidly converted into CO2 and H2S by COS hydrolysis.

Titania was found to be a good catalyst for methanethiol formation. The effect of vanadium addition was to increase CO and H2S conversion at the expense of methanethiol selectivity. High activities and selectivities to methanethiol were obtained using a sulfided vanadium catalyst supported on Al2O3. The TiO2, V2O5/TiO2 and V2O5/Al2O3 catalysts have been characterized by temperature programmed sulfidation (TPS). TPS profiles suggest a role of V2O5 in the sulfur exchange reactions taking place in the reaction network of H2S and CO.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号