首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Neural implicit surfaces have emerged as an effective, learnable representation for shapes of arbitrary topology. However, representing open surfaces remains a challenge. Different methods, such as unsigned distance fields (UDF), have been proposed to tackle this issue, but a general solution remains elusive. The generalized winding number (GWN), which is often used to distinguish interior points from exterior points of 3D shapes, is arguably the most promising approach. The GWN changes smoothly in regions where there is a hole in the surface, but it is discontinuous at points on the surface. Effectively, this means that it can be used in lieu of an implicit surface representation while providing information about holes, but, unfortunately, it does not provide information about the distance to the surface necessary for e.g. ray tracing, and special care must be taken when implementing surface reconstruction. Therefore, we introduce the semi-signed distance field (SSDF) representation which comprises both the GWN and the surface distance. We compare the GWN and SSDF representations for the applications of surface reconstruction, interpolation, reconstruction from partial data, and latent vector analysis using two very different data sets. We find that both the GWN and SSDF are well suited for neural representation of open surfaces.  相似文献   

2.
We describe a two-level method for computing a function whose zero-level set is the surface reconstructed from given points scattered over the surface and associated with surface normal vectors. The function is defined as a linear combination of compactly supported radial basis functions (CSRBFs). The method preserves the simplicity and efficiency of implicit surface interpolation with CSRBFs and the reconstructed implicit surface owns the attributes, which are previously only associated with globally supported or globally regularized radial basis functions, such as exhibiting less extra zero-level sets, suitable for inside and outside tests. First, in the coarse scale approximation, we choose basis function centers on a grid that covers the enlarged bounding box of the given point set and compute their signed distances to the underlying surface using local quadratic approximations of the nearest surface points. Then a fitting to the residual errors on the surface points and additional off-surface points is performed with fine scale basis functions. The final function is the sum of the two intermediate functions and is a good approximation of the signed distance field to the surface in the bounding box. Examples of surface reconstruction and set operations between shapes are provided.  相似文献   

3.
We propose a novel, geometrically adaptive method for surface reconstruction from noisy and sparse point clouds, without orientation information. The method employs a fast convection algorithm to attract the evolving surface towards the data points. The force field in which the surface is convected is based on generalized Coulomb potentials evaluated on an adaptive grid (i.e., an octree) using a fast, hierarchical algorithm. Formulating reconstruction as a convection problem in a velocity field generated by Coulomb potentials offers a number of advantages. Unlike methods which compute the distance from the data set to the implicit surface, which are sensitive to noise due to the very reliance on the distance transform, our method is highly resilient to shot noise since global, generalized Coulomb potentials can be used to disregard the presence of outliers due to noise. Coulomb potentials represent long-range interactions that consider all data points at once, and thus they convey global information which is crucial in the fitting process. Both the spatial and temporal complexities of our spatially-adaptive method are proportional to the size of the reconstructed object, which makes our method compare favorably with respect to previous approaches in terms of speed and flexibility. Experiments with sparse as well as noisy data sets show that the method is capable of delivering crisp and detailed yet smooth surfaces.  相似文献   

4.
We present a multi-level partition of unity algebraic set surfaces (MPU-APSS) for surface reconstruction which can be represented by either a projection or in an implicit form. An algebraic point set surface (APSS) defines a smooth surface from a set of unorganized points using local moving least-squares (MLS) fitting of algebraic spheres. However, due to the local nature, APSS does not work well for geometry editing and modeling. Instead, our method builds an implicit approximation function for the scattered point set based on the partition of unity approach. By using an octree subdivision strategy, we first adaptively construct local algebraic spheres for the point set, and then apply weighting functions to blend together these local shape functions. Finally, we compute an error-controlled approximation of the signed distance function from the surface. In addition, we present an efficient projection operator which makes our representation suitable for point set filtering and dynamic point resampling. We demonstrate the effectiveness of our unified approach for both surface reconstruction and geometry modeling such as surface completion.  相似文献   

5.
Implicit Fitting Using Radial Basis Functions with Ellipsoid Constraint   总被引:1,自引:0,他引:1  
Implicit planar curve and surface fitting to a set of scattered points plays an important role in solving a wide variety of problems occurring in computer graphics modelling, computer graphics animation, and computer assisted surgery. The fitted implicit surfaces can be either algebraic or non‐algebraic. The main problem with most algebraic surface fitting algorithms is that the surface fitted to a given data set is often unbounded, multiple sheeted, and disconnected when a high degree polynomial is used, whereas a low degree polynomial is too simple to represent general shapes. Recently, there has been increasing interest in non‐algebraic implicit surface fitting. In these techniques, one popular way of representing an implicit surface has been the use of radial basis functions. This type of implicit surface can represent various shapes to a high level of accuracy. In this paper, we present an implicit surface fitting algorithm using radial basis functions with an ellipsoid constraint. This method does not need to build interior and exterior layers for the given data set or to use information on surface normal but still can fit the data accurately. Furthermore, the fitted shape can still capture the main features of the object when the data sets are extremely sparse. The algorithm involves solving a simple general eigen‐system and a computation of the inverse or psedo‐inverse of a matrix, which is straightforward to implement.  相似文献   

6.
目的 针对含少量离群点的噪声点云,提出了一种Voronoi协方差矩阵的曲面重建方法。方法 以隐函数梯度在Voronoi协方差矩阵形成的张量场内的投影最大化为目标,构建隐函数微分方程,采用离散外微分形式求解连续微分方程,从而将曲面重建问题转化为广义特征值求解问题。在点云空间离散化过程中,附加最短边约束条件,避免了局部空间过度剖分。并引入概率测度理论定义曲面窄带,提高了算法抵抗离群点能力,通过精细剖分曲面窄带,提高了曲面重建精度。结果 实验结果表明,该算法可以抵抗噪声点和离群点的影响,可以生成不同分辨率的曲面。通过调整拟合参数,可以区分曲面的不同部分。结论 提出了一种新的隐式曲面重建方法,无需点云法向、稳健性较强,生成的三角面纵横比好。  相似文献   

7.
提出一种以代数张量积B-样条曲面作为几何表示形式的方式,采用Sampson距离来度量数据点与曲面之间的误差,它不仅是几何距离的很好近似且具有齐性和刚体不变的良好性质.建立了近似几何误差和薄板能量极小化的最优化隐式曲面重构模型.同时结合最优化理论中的信赖域思想和拟牛顿法,给出自适应的选代求解算法及其实现.理论上由信赖域法的收敛性分析,迭代算法具有总体收敛性.最后基于散乱点数据集,给出曲面重构的实例,并作简单的讨论.  相似文献   

8.
Fitting unorganized point clouds with active implicit B-spline curves   总被引:1,自引:0,他引:1  
In computer-aided geometric design and computer graphics, fitting point clouds with a smooth curve (known as curve reconstruction) is a widely investigated problem. In this paper, we propose an active model to solve the curve reconstruction problem, where the point clouds are approximated by an implicit B-spline curve, i.e., the zero set of a bivariate tensor-product B-spline function. We minimize the geometric distance between the point clouds and the implicit B-spline curve and an energy term (or smooth term) which helps to extrude the possible extra branches of the implicit curve. In each step of the iteration, the trust region algorithm in optimization theory is applied to solve the corresponding minimization problem. We also discuss the proper choice of the initial shape of the approximation curve. Examples are provided to illustrate the effectiveness and robustness of our algorithm. The examples show that the proposed algorithm is capable of handling point clouds with complicated topologies.  相似文献   

9.
Implicit representations have gained an increasing popularity in geometric modeling and computer graphics due to their ability to represent shapes with complicated geometry and topology. However, the storage requirement, e.g. memory or disk usage, for implicit representations of complex models is relatively large. In this paper, we propose a compact representation for multilevel rational algebraic spline (MRAS) surfaces using low-rank tensor approximation technique, and exploit its applications in surface reconstruction. Given a set of 3D points equipped with oriented normals, we first fit them with an algebraic spline surface defined on a box that bounds the point cloud. We split the bounding box into eight sub-cells if the fitting error is greater than a given threshold. Then for each sub-cell over which the fitting error is greater than the threshold, an offset function represented by an algebraic spline function of low rank is computed by locally solving a convex optimization problem. An algorithm is presented to solve the optimization problem based on the alternating direction method of multipliers (ADMM) and the CANDECOMP/PARAFAC (CP) decomposition of tensors. The procedure is recursively performed until a certain accuracy is achieved. To ensure the global continuity of the MRAS surface, quadratic B-spline weight functions are used to blend the offset functions. Numerous experiments show that our approach can greatly reduce the storage of the reconstructed implicit surface while preserve the fitting accuracy compared with the state-of-the-art methods. Furthermore, our method has good adaptability and is able to produce reconstruction results with high quality.  相似文献   

10.
提出了一种以隐式B-样条曲线为表达形式,基于直接Greville纵标的曲线重建方法。根据点云建立有向距离场,并作为B-样条函数的Greville纵标,然后根据高影响区内的平均代数误差优化Greville纵标;得到一个隐式B-样条函数,该函数的零点集即为重建曲线。该方法具有模型简单,重建速度快,无多余分支,无需手工调节任何参数的优点。实验结果证实了该直接法的效率明显高于点拟合法和普通场拟合法,以几何误差为准则的精度亦优于普通场拟合方法。  相似文献   

11.
Reverse engineering ordinarily uses laser scanners since they can sample 3D data quickly and accurately relative to other systems. These laser scanner systems, however, yield an enormous amount of irregular and scattered digitized point data that requires intensive reconstruction processing. Reconstruction of freeform objects consists of two main stages: parameterization and surface fitting. Selection of an appropriate parameterization is essential for topology reconstruction as well as surface fitness. Current parameterization methods have topological problems that lead to undesired surface fitting results, such as noisy self-intersecting surfaces. Such problems are particularly common with concave shapes whose parametric grid is self-intersecting, resulting in a fitted surface that considerably twists and changes its original shape. In such cases, other parameterization approaches should be used in order to guarantee non-self-intersecting behavior. The parameterization method described in this paper is based on two stages: 2D initial parameterization; and 3D adaptive parameterization. Two methods were developed for the first stage: partial differential equation (PDE) parameterization and neural network self organizing maps (SOM) parameterization. The Gradient Descent Algorithm (GDA) and Random Surface Error Correction (RSEC), both of which are iterative surface fitting methods, were developed and implemented  相似文献   

12.
In this paper we consider a fundamental visualization problem: shape reconstruction from an unorganized data set. A new minimal-surface-like model and its variational and partial differential equation (PDE) formulation are introduced. In our formulation only distance to the data set is used as our input. Moreover, the distance is computed with optimal speed using a new numerical PDE algorithm. The data set can include points, curves, and surface patches. Our model has a natural scaling in the nonlinear regularization that allows flexibility close to the data set while it also minimizes oscillations between data points. To find the final shape, we continuously deform an initial surface following the gradient flow of our energy functional. An offset (an exterior contour) of the distance function to the data set is used as our initial surface. We have developed a new and efficient algorithm to find this initial surface. We use the level set method in our numerical computation in order to capture the deformation of the initial surface and to find an implicit representation (using the signed distance function) of the final shape on a fixed rectangular grid. Our variational/PDE approach using the level set method allows us to handle complicated topologies and noisy or highly nonuniform data sets quite easily. The constructed shape is smoother than any piecewise linear reconstruction. Moreover, our approach is easily scalable for different resolutions and works in any number of space dimensions.  相似文献   

13.
提出隐式T样条曲面,将T网格从二维推广到三维情形,同时利用八叉树及其细分过程,从无结构散乱点数据集构造T网格,利用曲面拟合模型将曲面重构问题转化为最优化问题;然后基于隐式T样条曲面将最优化问题通过矩阵形式表述,依据最优化原理将该问题转化成线性方程组,通过求解线性方程组解决曲面重构问题;最后结合计算实例进行讨论.该方法能较好地解决曲面重构问题,与传统张量B样条函数相比,能效地减少未知控制系数与计算量.  相似文献   

14.
15.
Implicit meshes for surface reconstruction   总被引:1,自引:0,他引:1  
Deformable 3D models can be represented either as traditional explicit surfaces, such as triangulated meshes, or as implicit surfaces. Explicit surfaces are widely accepted because they are simple to deform and render, but fitting them involves minimizing a nondifferentiable distance function. By contrast, implicit surfaces allow fitting by minimizing a differentiate algebraic distance, but are harder to meaningfully deform and render. Here, we propose a method that combines the strength of both approaches. It relies on a technique that can turn a completely arbitrary triangulated mesh, such as one taken from the Web, into an implicit surface that closely approximates it and can deform in tandem with it. This allows both automated algorithms to take advantage of the attractive properties of implicit surfaces for fitting purposes and people to use standard deformation tools they feel comfortable for interaction and animation purposes. We demonstrate the applicability of our technique to modeling the human upper-body, including face, neck, shoulders, and ears, from noisy stereo and silhouette data.  相似文献   

16.
Given a large set of unorganized point sample data, we propose a new framework for computing a triangular mesh representing an approximating piecewise smooth surface. The data may be non-uniformly distributed, noisy, and may contain holes. This framework is based on the combination of two types of surface representations, triangular meshes and T-spline level sets, which are implicit surfaces defined by refinable spline functions allowing T-junctions. Our method contains three main steps. Firstly, we construct an implicit representation of a smooth (C 2 in our case) surface, by using an evolution process of T-spline level sets, such that the implicit surface captures the topology and outline of the object to be reconstructed. The initial mesh with high quality is obtained through the marching triangulation of the implicit surface. Secondly, we project each data point to the initial mesh, and get a scalar displacement field. Detailed features will be captured by the displaced mesh. Finally, we present an additional evolution process, which combines data-driven velocities and feature-preserving bilateral filters, in order to reproduce sharp features. We also show that various shape constraints, such as distance field constraints, range constraints and volume constraints can be naturally added to our framework, which is helpful to obtain a desired reconstruction result, especially when the given data contains noise and inaccuracies.  相似文献   

17.
We present a reconstruction framework, which fits physically‐based constraints to model large‐scale cloud scenes from satellite images. Applications include weather phenomena visualization, flight simulation, and weather spotter training. In our method, the cloud shape is assumed to be composed of a cloud top surface and a nearly flat cloud base surface. Based on this, an effective method of multi‐spectral data processing is developed to obtain relevant information for calculating the cloud base height and the cloud top height, including ground temperature, cloud top temperature and cloud shadow. A lapse rate model is proposed to formulate cloud shape as an implicit function of temperature lapse rate and cloud base temperature. After obtaining initial cloud shapes, we enrich the shapes by a fractal method and represent reconstructed clouds by a particle system. Experiment results demonstrate the capability of our method in generating physically sound large‐scale cloud scenes from high‐resolution satellite images.  相似文献   

18.
We present an implicit surface reconstruction algorithm for point clouds. We view the implicit surface reconstruction as a three dimensional binary image segmentation problem that segments the entire space $\mathbb R ^3$ or the computational domain into an interior region and an exterior region while the boundary between these two regions fits the data points properly. The key points with using an image segmentation formulation are: (1) an edge indicator function that gives a sharp indicator of the surface location, and (2) an initial image function that provides a good initial guess of the interior and exterior regions. In this work we propose novel ways to build both functions directly from the point cloud data. We then adopt recent convexified image segmentation models and fast computational algorithms to achieve efficient and robust implicit surface reconstruction for point clouds. We test our methods on various data sets that are noisy, non-uniform, and with holes or with open boundaries. Moreover, comparisons are also made to current state of the art point cloud surface reconstruction techniques.  相似文献   

19.
基于径向基函数网络的隐式曲线   总被引:5,自引:1,他引:4  
将径向基函数网络与隐式曲线构造原理相结合,提出了构造隐式曲线的新方法,即首先由约束点构造神经网络的输入与输出,把描述物体边界曲线的隐式函数转化为显式函数,然后用径向基函数网络对此显式函数进行逼近,最后由神经网络的仿真曲面得到物体边界的拟合曲线.实验表明,基于径向基函数网络的隐式曲线具有很强的物体边界描述能力和缺损修复能力.  相似文献   

20.
针对三维模型重建后存在大量复杂孔洞的问题,提出一种孔洞修补算法。首先构造符号距离函数,孔洞所在曲面用静态符号距离函数的零水平集表达,另一动态符号距离函数表示初始曲面;借助隐式曲面上的变分水平集,引入全局凸优化能量模型,通过对其极小化诱导,从而将提取孔洞边缘的问题转化为维体上隐式曲面的演化过程;最后以提取到的孔洞边缘曲面作为初始观察面,通过卷积和合成两个交替的步骤进行体素扩散完成孔洞修补。实验表明该算法能够有效恢复复杂孔洞区域的显著几何特征,且适用于含有网格较多的模型的孔洞修复。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号