首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Abstract  

The conversion of eugenol (4-allyl-2-methoxyphenol), a compound derived from the lignin in woody biomass, was catalyzed by HY zeolite at 573 K and atmospheric pressure. The main products were isoeugenol and guaiacol, formed by isomerization and by deallylation, respectively. Substituted guaiacols with saturated side-chains (4-methylguaiacol, 4-ethylguaiacol, and 4-propylguaiacol) were also formed, by hydrogen transfer and alkylation reactions. The pseudo-first-order rate constant for the overall disappearance of eugenol was found to be 12.4 L (g of catalyst)/h. When the catalyst was Pt/γ-Al2O3 used in the presence of H2, significant hydrogenation of the propenyl side-chain took place, accompanied by isomerization, and hydrodeoxygenation. Under similar operating conditions, the reaction catalyzed by Pt/γ-Al2O3 in the presence of H2 gave a higher eugenol conversion (X = 0.70) than the reaction catalyzed by HY zeolite (X = 0.11), primarily because of the dominant hydrogenation observed with the former catalyst. In the absence of H2 as a co-reactant, the acidic γ-Al2O3 support in Pt/γ-Al2O3 evidently catalyzed all the classes of reactions catalyzed by HY zeolite.  相似文献   

2.

Abstract  

The conversion of cyclohexanone, often identified as an intermediate in the conversion of lignin-derived compounds, was catalyzed by Pt/γ-Al2O3 in the presence of H2 at 573 K. Dehydrogenation was a kinetically significant reaction, indicated by a high selectivity for phenol. Oxygen-removal reactions are indicated by products including benzene, cyclohexene, and cyclohexene. Bimolecular reactions involving cyclohexanone and/or products of its conversion led to the formation of bicyclic C12 compounds, with 2-cyclohexylcyclohexan-1-one and 2-phenylphenol being the most abundant. Increasing the H2 partial pressure led to increased oxygen removal and faster formation of monocyclic and bicyclic hydrocarbons. At temperatures higher than 573 K, dehydrogenation became the dominant reaction class.  相似文献   

3.
The effect of the hydroisomerization conditions of the benzene-containing fraction of catalytic reforming gasoline on the yield and composition of products is studied on Pt/B2O3–Al2O3 and Pt/WO3–Al2O3 catalysts. These catalysts allow benzene to be completely removed from the raw material. At the same time, the greatest yields of liquid products are obtained with minimal losses of the octane number at 2 MPa, a mass feedstock hourly space velocity (MFHSV) of 2 h?1, and 325°C: 96.3 and 95.4 wt % on Pt/B2O3–Al2O3 and Pt/WO3–Al2O3 catalysts, respectively. The activity of the catalysts is maintained for 100 h during their operation.  相似文献   

4.
Operando X-ray absorption fine structure (XAFS) investigations were performed on Pt/γ-Al2O3 during the total oxidation of C3H6 in reducing and oxidizing atmospheres. Study of the Pt valance state and catalytic conversion behavior as a function of temperature revealed that both the creation of metallic Pt sites and the activation of adsorbed species on Pt are important for the functioning of the catalytic reaction at low temperature.  相似文献   

5.

Abstract  

The Rh/α-Al2O3 catalyst was modified by CeO2 in order to improve the thermal stability and the carbon deposition resistance during the CO2 reforming of methane The carbon formation was determined by TPO, TEM and Raman spectroscopy. Characterization results showed that the incorporation of Ce in the support inhibits the carbon deposition, increasing the useful life and the stability of the Rh base catalysts.  相似文献   

6.

Abstract  

A series of different contents of Si-stabilized aluminas with high thermal stability were synthesized by the coprecipitation method and were used as the support of Pt diesel oxidation catalysts. The physicochemical properties of SiO2–Al2O3 (SA) and the catalytic performance of Pt/SiO2–Al2O3 (Pt/SA) were characterized in detail by TG–DTA, XRD, infrared spectroscopy, N2 adsorption, NMR, CO-TPD, and the catalytic activity evaluation of CO and C3H6 oxidations as well as NO reduction in simulating diesel exhaust. The results indicate that the presence of Si can remarkably enhance the thermal stability and phase transition temperature of alumina. It was also found that the catalytic activity is virtually independent of surface area, and only appropriate amount of Si doping can improve the diesel oxidation activity, as compared to pure Pt/Al2O3 under the same conditions as a result of the better dispersion of Pt on SA–W supports.  相似文献   

7.
8.
We report here the preparation of biodiesel by transesterification of rapeseed oil with methanol using calcined K2CO3/γ-Al2O3 as a solid base catalyst. The prepared catalysts were characterized using SEM, IR and BET, and their catalytic activities were evaluated. The reaction conditions were optimized, and in particular, the conversion can be as high as 98.62% under the optimal reaction conditions. In addition, the effect of the presence of water in the reaction system on the catalytic activity was also studied.  相似文献   

9.
A series of Pt/Al2O3 catalysts were prepared by the impregnation method and were characterized by TEM, XRD, H2 and CO chemisorptions, and investigated in the hydrodechlorination of tetrachloromethane. Three Pt-rich, Pt–Au/Al2O3 catalysts (Pt100, Pt95Au5 and Pt90Au10) showed a similar metal particle size (~2.5–2.7 nm), so observed changes in the catalytic behavior are ascribed to alloying effect, especially because a considerable degree of Pt–Au mixing was achieved in the bimetallic samples. It appeared that by introducing very small amount of gold (10 at.%) to platinum, the catalytic activity is increased. It is argued that the occurrence of this moderate synergistic effect is associated with a decreased tendency of surface chloriding when platinum is alloyed with gold. Zbigniew Kowalczyk—deceased.  相似文献   

10.
The heterogeneous base catalyst, γ-Al2O3 loaded with KOH and K (K/KOH/γ-Al2O3) was first prepared and used in the transesterification of rapeseed oil with methanol to produce biodiesel. The prepared catalyst was characterized by X-ray diffraction, scanning electron microscopy, Brunauer–Emmett–Teller method, infrared spectroscopy and X-ray photoelectron spectroscopy. It was found that when γ-Al2O3 is loaded with KOH and K, the Al–O–K species is produced, resulting in an increase in the catalytic activity. The impacts of catalyst preparation conditions on the catalytic activities of K/KOH/γ-Al2O3 were investigated. The results demonstrate that the catalyst K/KOH/γ-Al2O3 has high catalytic activity when the added amounts of KOH and K are 20 and 7.5 wt% respectively. The transesterification of rapeseed oil to biodiesel with the prepared heterogeneous base catalyst was optimized. It was found that the yield of biodiesel can reach as high as 84.52% after 1 h reaction at 60°C, with a 9:1 molar ratio of methanol to oil, a catalyst amount of 4 wt%, and a stirring rate of 270 g.  相似文献   

11.

Abstract  

The precursor particles for γ-Ga2O3–Al2O3 solid solutions were prepared by the coprecipitation method from aqueous solutions of Ga(NO3)3 and Al(NO3)3 with (NH4)2CO3 as a precipitant. The γ-Ga2O3–Al2O3 solid solutions were obtained by calcination of the precursor at 700 °C. In this paper, the performance of the catalysts treated with NH3 was investigated for the selective catalytic reduction (SCR) of NO with methane as a reducing agent, and it was found that γ-Ga2O3–Al2O3 catalysts treated with NH3 and subsequently annealed in air showed higher activities than the γ-Ga2O3–Al2O3 catalysts without NH3 treatment. NH3 treatment of the catalyst caused partial rearrangement of Ga3+ and Al3+ ions and increased the population of tetrahedral Ga3+ ions in the defective spinel structure.  相似文献   

12.
Oxide based optical glass materials has important potential material in many applications from fiber optic to sensor due to the high transparency and amourphous structures. The objective of this study is to synthesize the novel optical glass materials based on the bismuth and aluminum contents to be able to determine the physical, chemical and mechanical properties by considering the systematic experimental steps. In this study, Bi2O3–Al2O3 based tellurite optical glasses have been prepared by using conventional melt quenching method as a function of the both Bi2O3 and Al2O3 compositions. There is a strong interactions between the glass former and modifier ions that might effect on the structure and mechanical properties. During the experimental steps, thermal, structural and mechanical properties of the prepared glass materials have been determined considering the DTA/DSC, FT-IR spectroscopy, SEM and Vicker’s hardness techniques, respectively. Thermal parameters, like glass transition, Tg, onset, Tx, crystallization, Tp, and melting, Tm, temperatures were obtained by using DTA scan.  相似文献   

13.
In this work, the response surface methodology (RSM) based on the central composite design (CCD) was used to examine effects of different gamma alumina (γ-Al2O3) loadings (0 to 8 wt.%) and various polyethylene glycol 1000 (PEG1000) contents (0 to 40 wt.%) as parameters on membrane preparation. Accordingly, pure carbon dioxide (CO2) and methane (CH4) gasses permeability and ideal CO2/CH4 selectivity values were considered as responses. Poly (ether block amide) 1657 (Pebax1657) was used as the base polymer matrix for the membranes fabrication. The neat Pebax1657 membrane was prepared via solution casting-solvent evaporation method and the other membranes were prepared via solution blending technique. Analysis of variance (ANOVA) was used to analyze the experiments statistically and the results indicated that the optimized amounts of γ-Al2O3 nanoparticles and PEG1000 in order to enhance both CO2 permeability and ideal CO2/CH4 selectivity were 8 wt.% and 10 wt.%, respectively. Additionally, a comparison between the separation performance of the neat membrane, the nanocomposite membrane with the optimum amount of γ-Al2O3 nanoparticles, the blended membrane with optimum amounts of PEG1000, and the blended nanocomposite membrane with optimum amounts of γ-Al2O3 nanoparticles and PEG1000 was presented. The obtained gas permeation results showed that the blended nanocomposite membrane exhibits the highest CO2/CH4 separation performance compared to the neat Pebax membrane.  相似文献   

14.
Monometallic copper and bimetallic palladium-copper catalysts supported on ZnO–Al2O3 and ZrO2–Al2O3 were prepared by conventional impregnation method and tested in methanol synthesis reaction under elevated pressure (3.5 MPa) in gradientless reactor at 220°C. The physicochemical properties of prepared catalytic systems were studied using BET, X-ray, TPR-H2, TPD-NH3 techniques. The promotion effect of palladium on catalytic activity and selectivity of copper supported catalyst in methanol synthesis reaction was proven. The highest activity of this system is explained by the Pd–Cu alloy formation.  相似文献   

15.
16.
An oxygen-diluted partially premixed/oxygen-enriched supplemental combustion (ODPP/OESC) counterflow flame is studied in this paper. Flame images are obtained through experiments and numerical simulations with the GRI-Mech 3.0 chemistry. The oxygen dilution effects are revealed by comparing the flame structures and emissions with those of a premixed flame and partially premixed flame (PPF) at the same equivalence ratio (?Σ = 0.95 and ? f = 1.4). The results show that both PPF and ODPP/OESC flames have distinct double flame structures; however, the location of the premixed combustion zone and the distance between premixed/nonpremixed combustion zone are significantly different for these two cases. For the ODPP/OESC flame, the temperature in the premixed combustion zone is lower and the premixed zone itself is located farther downstream from the fuel nozzle, which leads to reduction of NO and CO emissions, as compared to those of the PPF. Therefore, by adjusting the distribution of the oxygen concentration in the premixed and nonpremixed combustion zones, the ODPP/OESC can effectively balance the chemical reaction rate in the entire combustion zone and, consequently, reduce emissions.  相似文献   

17.
Ternary IrO2–Sb2O5–SnO2 anode has shown its superiorities over IrO2 and many other electrocatalysts for O2 evolution, in terms of electrochemical stability, activity and cost. The performance of IrO2–Sb2O5–SnO2 anodes is affected by its electrochemical properties and operating conditions. In this paper, the electrochemical stability and activity of the Ti/IrO2–Sb2O5–SnO2 anodes prepared with three different geometries were investigated under different operating conditions. It was found that anodes with large mean curvature have high electrochemical stability. Although increasing temperature results in a decrease in the stability of Ti/IrO2–Sb2O5–SnO2, the anode with a mean curvature of 200 m−1 still shows acceptable service life even at 70 °C. This tolerance of high temperature was attributed to the thermal expansion difference between the substrate and the coating layer, the redox window for Ir(V)/Ir(IV) conversion, and the redox reversibility of Sb and Sn species in the coating layer.  相似文献   

18.
This work is devoted to the preparation of zirconium oxide nanopowders stabilized by lanthanum oxide using the method of codeposition in the presence of hydrogen peroxide. Nanopowders composed of 0.97ZrO2 · 0.03La2O3 with particles of 10–20 nm are obtained. It is found that in the temperature interval of 500–1100°C the tetragonal and monoclinic points of the zirconium oxide phase crystallize at the same time.  相似文献   

19.
Some photon interaction parameters such as mass attenuation coefficient, effective atomic number, half value layer, mean free path and electron density for 15ZnO–(17.5–x)Al2O3xFe2O3–67.5P2O5 glass system (x = 0, 7.5, 12.5, 17.5) and 15ZnO–(25–x)Al2O3xFe2O3–60P2O5 glass system (x = 0, 25) have been investigated in the photon energy range of 1 keV to 100 GeV. It has been observed that all the photon interaction parameters for the selected glass systems vary with the photon energy. Among the selected glass systems, the sample 15ZnO–25Fe2O3–60P2O5 glass system shows maximum values for mass attenuation coefficients, effective atomic numbers, electron densities and minimum values for mean free path and half value layer in the entire energy grid.  相似文献   

20.
One of the key factors responsible for the poor cycleability of Li–O2 batteries is a formation of byproducts from irreversible reactions between electrolyte and discharge product Li2O2 and/or intermediate LiO2. Among many solvents that are used as electrolyte component for Li–O2 batteries, acetonitrile (MeCN) is believed to be relatively stable towards oxidation. Using near ambient pressure X-ray photoemission spectroscopy (NAP XPS), we characterized the reactivity of MeCN in the Li–O2 battery. For this purpose, we designed the model electrochemical cell assembled with solid electrolyte. We discharged it first in O2 and then exposed to MeCN vapor. Further, the discharge was carried out in O2?+?MeCN mixture. We have demonstrated that being in contact with Li–O2 discharge products, MeCN oxidizes. This yields species that are weakly bonded to the surface and can be easily desorbed. That’s why they cannot be detected by the conventional XPS. Our results suggest that the respective chemical process most probably does not give rise to electrode passivation but can decrease considerably the Coulombic efficiency of the battery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号