首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.

Abstract  

The amorphous inorganic phase of an ordered amorphous mesoporous Nb2O5 with two dimensional hexagonal (2D-hex) structure was crystallized with maintaining the original well arranged porous structure. The difference in surface property between amorphous and crystalline Nb2O5 with similar ordered mesoporous structure was compared. It was found from water adsorption–desorption isotherms and observation by infrared (IR) spectroscopy that the amorphous sample was hydrophilic and that the surface OH groups were acidic. On the other hand, the OH groups on crystalline mesoporous Nb2O5 were non-acidic and inside the pores was less hydrophilic. The surface property was also compared by a catalytic reaction, oxidation of cyclohexe by an aqueous solution of H2O2. The high (95%) selectivity for 1,2-epoxycyclohexane was obtained at 40 °C for 2 h in methanol solvent over crystalline mesoporous Nb2O5 at 12% conversion, while amorphous mesoporous Nb2O5 showed high (68%) selectivity for 1,2-cyclohexanediol in acetonitrile solvent at 60 °C for 2 h at 22% conversion. The differences in selectivity and the optimal solvent between amorphous and crystalline samples were interpreted in terms of the acidic feature of surface OH groups and hydrophilicity. While similar selectivity was observed over non-porous crystalline Nb2O5, much higher conversion over crystalline mesoporous Nb2O5 was attained at the same surface area. Thus, an advantage of mesoporous structure is attributed to the higher contact time of molecules inside the pores to the catalyst surface than those outside the particles.  相似文献   

2.
Co3O4 nanorods have been successfully synthesized by thermal decomposition of the precursor prepared via a facile and efficient microwave-assisted hydrothermal method, using cetyltrimethylammonium bromide (CTAB) with ordered chain structures as soft template for the first time. The obtained Co3O4 was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and electrochemical measurements. The results demonstrate that the as-synthesized nanorods are single crystalline with an average diameter of about 20 to 50 nm and length up to several micrometers. Preliminary electrochemical studies, including cyclic voltammetry (CV), galvanostatic charge–discharge, and electrochemical impedance spectroscopy (EIS) measurements, are carried out in 6 M KOH electrolyte. Specific capacitance of 456 F g−1 for a single electrode could be achieved even after 500 cycles, suggesting its potential application in electrochemical capacitors. This promising method could provide a universal green chemistry approach to synthesize other low-cost and environmentally friendly transition metal hydroxide or oxide.  相似文献   

3.

Abstract  

The performance of pellets of unsupported and silica-supported Co3O4 in the ammonia oxidation was investigated as a function of the particle size to investigate the utilization of the catalytically active phase in these materials. The obtained activity in terms of ammonia conversion over the silica-supported Co3O4 is higher compared to the conversion over the unsupported Co3O4, despite a lower cobalt oxide loading and more severe diffusional limitations. The effectiveness factor for the silica-supported catalyst is slightly lower than the effectiveness factor for the unsupported catalyst in the form of pellets of similar size. However, the effective utilization of cobalt within the catalyst is higher for the silica-supported catalyst, mainly due to the higher dispersion of the catalytically active phase.  相似文献   

4.
A series of Zr-doped ordered mesoporous Al2O3 with various Zr contents were synthesized by evaporation-induced self-assembly strategy and the Ni-based catalysts supported on these Al2O3 materials were prepared by impregnation method. These catalysts with large specific surface area, big pore volume, uniform pore size possess excellent catalytic performance for the low-temperature carbon dioxide reforming of methane. The activities of these catalysts were tested in carbon dioxide reforming of methane reaction with temperature increasing from 500 to 650?°C and the stabilities of these catalysts were evaluated for long time reaction at 650?°C. It was found that when Zr/(Zr?+?Al) molar ratio?=?0.5%, the Ni/0.5ZrO2–Al2O3 catalyst showed the highest activity, and exhibited superior stabilization compared to the Ni-based catalyst supported on traditional ordered mesoporous Al2O3. The “confinement effect” from mesoporous channels of alumina matrix is helpful to stabilize the Ni nanoparticles. As a promoter, Zr could stabilize the ordered mesoporous framework by reacting with Al2O3 to form ZrO2–Al2O3 solid solution. Since ZrO2 enhances the dissociation of carbon dioxide, more oxygen intermediates are given to remove the carbon formed during the reaction.  相似文献   

5.

Abstract  

NiFe2O4 nanoparticles stabilized by porous silica shells (NiFe2O4@SiO2) were prepared using a one-pot synthesis and characterized for their physical and chemical stability in severe environments, representative of those encountered in industrial catalytic reactors. The SiO2 shell is porous, allowing transport of gases to and from the metal core. The shell also stabilizes NiFe2O4 at the nanoparticle surface: NiFe2O4@SiO2 annealed at temperatures through 973 K displays evidence of surface Ni, as verified by H2 TPD analyses. At 1,173 K, hematite forms at the surface of the metallic cores of the NiFe2O4@SiO2 nanoparticles and surface Ni is no longer observed. Without the silica shell, however, even mild reduction (at 773 K) can draw Fe to the surface and eliminate surface Ni sites.  相似文献   

6.
The highly ordered mesoporous CoFe2O4 and CuFe2O4 with crystalline walls can be synthesized by hard template with using mesoporous silica SBA-15 as hard template and using ferric nitrate, cobalt nitrate, and copper nitrate as metal precursors. These new mesoporous materials above have high surface areas, narrow pore size distribution, and large pore volumes, which are believed to be valuable for the potential application in the field of sensors, catalysis, message recording, magnetics, and biology. This work provides a method to fabricate the highly ordered mesoporous materials composed of multi-metal oxides with crystalline walls. The development of such versatile approach is of great significance in practical application. It can be envisaged that this established method is significantly expandable to the controlled synthesis of the mesoporous functional materials with diverse compositions.  相似文献   

7.
Results of the characterization of six Co-based Fischer–Tropsch (FT) catalysts, with 15% Co loading and supported on SiO2 and Al2O3, are presented. Room temperature X-ray diffraction (XRD), temperature and magnetic field (H) variation of the magnetization (M), and low-temperature (5 K) electron magnetic resonance (EMR) are used for determining the electronic states (Co0, CoO, Co3O4, Co2+) of cobalt. Performance of these catalysts for FT synthesis is tested at reaction temperature of 240 °C and pressure of 20 bars. Under these conditions, 15% Co/SiO2 catalysts yield higher CO and syngas conversions with higher methane selectivity than 15% Co/Al2O3 catalysts. Conversely the Al2O3 supported catalysts gave much higher selectivity towards olefins than Co/SiO2. These results yield the correlation that the presence of Co3O4 yield higher methane selectivity whereas the presence of Co2+ species yields lower methane selectivity but higher olefin selectivity. The activities and selectivities are found to be stable for 55 h on-stream.  相似文献   

8.
In this contribution we describe the use of heterogeneous catalysts for the liquid-phase self-metathesis of 1-octene in supercritical CO2. Our work aims at addressing the mass-transfer problems associated with such reaction systems. By coupling a heterogeneous supported Re2O7 catalyst with the use of scCO2, the self-metathesis of 1-octene takes place by and large much more rapidly than in traditional solvent media, and furthermore, by using scCO2 the overall efficiency and sustainability of the transformation can be improved.
Maurizio Selva (Corresponding author)Email:
  相似文献   

9.

Abstract  

Hydrogenolysis of glycerol to 1,3-propanediol in aqueous-phase was investigated over Pt-H4SiW12O40/SiO2 bi-functional catalysts with different H4SiW12O40 (HSiW) loading. Among them, Pt-15HSiW/SiO2 showed superior performance due to the good dispersion of Pt and appropriate acidity. It is found that Br?nsted acid sites facilitate to produce 1,3-PDO selectively confirmed by Py-IR. The effects of weight hourly space velocity, reaction temperature and hydrogen pressure were also examined. The optimized Pt-HSiW/SiO2 catalyst showed a 31.4% yield of 1,3-propanediol with glycerol conversion of 81.2% at 200 °C and 6 MPa.  相似文献   

10.
In the present study, we present a facile strategy to synthesis Co3O4 materials with different morphology. Experimental results show that Co3O4 materials with flower-like, fiber, sheet-like and rod morphologies have been successfully prepared by hydrothermal synthesis in different solvent. The effect of the morphology on the electrochemical catalytic properties were also studied. It is found that sheet-like Co3O4 exhibits the best activity towards oxygen evolution reaction (η10?=?390 mV) in 1 M KOH, which can be attribute to its short electrolyte infiltration diffusion path lengths and low charge transfer resistant.

Graphical Abstract

LSV curves measured at 5 mV/s in 1 M KOH solution for OER, the inset image is FE-SEM image of prepared Co3O4 materials. a Flower, b fiber, c sheet and d rod.
  相似文献   

11.
Cobalt oxide [Co3O4] anode materials were synthesized by a simple hydrothermal process, and the reaction conditions were optimized to provide good electrochemical properties. The effect of various synthetic reaction and heat treatment conditions on the structure and electrochemical properties of Co3O4 powder was also studied. Physical characterizations of Co3O4 are investigated by X-ray diffraction, scanning electron microscopy, and Brunauer-Emmett-Teller [BET] method. The BET surface area decreased with values at 131.8 m2/g, 76.1 m2/g, and 55.2 m2/g with the increasing calcination temperature at 200°C, 300°C, and 400°C, respectively. The Co3O4 particle calcinated at 200°C for 3 h has a higher surface area and uniform particle size distribution which may result in better sites to accommodate Li+ and electrical contact and to give a good electrochemical property. The cell composed of Super P as a carbon conductor shows better electrochemical properties than that composed of acetylene black. Among the samples prepared under different reaction conditions, Co3O4 prepared at 200°C for 10 h showed a better cycling performance than the other samples. It gave an initial discharge capacity of 1,330 mAh/g, decreased to 779 mAh/g after 10 cycles, and then showed a steady discharge capacity of 606 mAh/g after 60 cycles.  相似文献   

12.

Abstract  

The highly oxygenated hydrocarbon triethylene glycol dimethyl ether or triglyme (CH3O–(C2H4O–)3CH3) was found to efficiently reduce NOx under lean conditions over Ag/Al2O3, but gave a low NOx conversion over Cu-ZSM-5. Furthermore, triglyme showed an extraordinary promoting effect when added together with propene as reducing agent for NOx over Ag/Al2O3 at low temperature. This is most likely due to that triglyme promotes the activation of propene.  相似文献   

13.
Hematite (α-Fe2O3) and magnetite (Fe3O4) nanowires with the diameter of about 100 nm and the length of tens of micrometers have been selectively synthesized by a microemulsion-based method in combination of the calcinations under different atmosphere. The effects of the precursors, annealing temperature, and atmosphere on the morphology and the structure of the products have been investigated. Moreover, Co3O4 nanowires have been fabricated to confirm the versatility of the method for metal oxide nanowires.  相似文献   

14.

Abstract  

A mesoporous MoO3/TiO2 composite was prepared from titanate derivative by consecutive self-supporting and ammonia method. All samples were characterized by X-ray Diffraction, N2 adsorption–desorption, Raman Spectra and Field-Emission Scanning Electron Microscopy. The results showed that mesoporous MoO3/TiO2 composite had a higher surface area (173 m2/g) and a better MoO3 dispersion than that prepared by traditional impregnation (90 m2/g). As for hydrodesulfurization tests, mesoporous MoO3/TiO2 composite in this case presented a better catalytic performance, attributed to its high surface area and good dispersion of MoO3. It can be found that self-supporting played a key role in preparing mesoporous MoO3/TiO2 composite with high surface area. Additionally, aqueous ammonia could effectively dissolve excess MoO3, which helped to obtain mesoporous MoO3/TiO2 composite with better dispersion of MoO3.  相似文献   

15.
Three types of Co3O4 nanoparticles are synthesized and characterized as a catalyst for the air electrode of a Li/air battery. The shape and size of the nanoparticles are observed using scanning electron microscopy and transmission electron microscopy analyses. The formation of the Co3O4 phase is confirmed by X-ray diffraction. The electrochemical property of the air electrodes containing Co3O4 nanoparticles is significantly associated with the shape and size of the nanoparticles. It appears that the capacity of electrodes containing villiform-type Co3O4 nanoparticles is superior to that of electrodes containing cube- and flower-type Co3O4 nanoparticles. This is probably due to the sufficient pore spaces of the villiform-type Co3O4 nanoparticles.  相似文献   

16.
LiNi0.4Co0.3Mn0.3O2 thin film electrodes are fabricated from LiNi0.4Co0.3Mn0.3O2 raw powder at room temperature without pretreatments using aerosol deposition that is much faster and easier than conventional methods such as vaporization, pulsed laser deposition, and sputtering. The LiNi0.4Co0.3Mn0.3O2 thin film is composed of fine grains maintaining the crystal structure of the LiNi0.4Co0.3Mn0.3O2 raw powder. In the cyclic voltammogram, the LiNi0.4Co0.3Mn0.3O2 thin film electrode shows a 3.9-V anodic peak and a 3.6-V cathodic peak. The initial discharge capacity is 44.6 μAh/cm2, and reversible behavior is observed in charge-discharge profiles. Based on the results, the aerosol deposition method is believed to be a potential candidate for the fabrication of thin film electrodes.  相似文献   

17.
Layered ceramics based on bismuth–calcium cobaltite with varied cobalt oxide contents is synthesized by the solid-phase method, the ceramics phase composition is determined, and the microstructure, thermal expansion, electroconductivity, and thermal electromotive force are investigated. The formation of just one compound, ternary oxide composed of Bi2Ca2Co1.7O y , is established within the quasi-binary Bi2Ca2O5–CoO z system. The effect of the cobalt oxide content on the Bi2Ca2Co x O y ceramics’ microstructure and physicochemical properties is analyzed. The single-phased ceramic sample Bi2Ca2Co1.7O y demonstrated the highest power factor value among all the investigated samples—26.0 μW/(m K2) at a temperature of 300 K. This sample showed the lowest value of the thermal linear expansion coefficient of 9.72 × 10–6 K–1.  相似文献   

18.

Abstract  

The catalytic performance during combined steam and carbon dioxide reforming of methane (SCR) was investigated on Ni/MgAl2O4 catalyst promoted with CeO2. The SCR catalyst was prepared by co-impregnation method using nickel and cerium metal precursors on hydrotalcite-like MgAl2O4 support. In terms of catalytic activity and stability, CeO2-promoted Ni/MgAl2O4 catalyst is superior to Ni–CeO2/Al2O3 or Ni/MgAl2O4 catalysts because of high resistance to coke formation and suppressed aggregation of nickel particles. The role of CeO2 on Ni/MgAl2O4 catalyst was elucidated by carrying out the various characterization methods in the viewpoint of the aggregation of nickel particles and metal-support interactions. The observed superior catalytic performance on CeO2-promoted Ni/MgAl2O4 catalyst at the weight ratio of MgO/Al2O3 of 3/7 seems to be closely related to high dispersion and low aggregation of active metals due to their strong interaction with the MgAl2O4 support and the adjacent contact of Ni and CeO2 species. The CeO2 promoter also plays an important role to suppress particle aggregation by forming an appropriate interaction of NiO–CeO2 as well as Ni–MgAl2O4 with the concomitant enhancement of mobile oxygen content.  相似文献   

19.
Selective hydrogenation of trans-cinnamaldehyde was studied on SiO2-supported Co–Ir bimetallic catalysts. Addition of Ir to Co/SiO2 increased the hydrogenation selectivity and activity of cinnamaldehyde to the corresponding cinnamyl alcohol (UOL). A selectivity as higher as 93% to UOL at ambient temperature under H2 pressure of 2.0 MPa was obtained over catalyst with loadings of 10 wt% Co and 0.5 wt% Ir (Co10.0Ir0.5/SiO2). The XRD, Raman and TPR results showed that the higher dispersed Co3O4 particles were formed on SiO2 due to the addition of Ir, which increased the reducibility of Co3O4 to Co0. The reduction of oxidized Co–Ir/SiO2 samples occurred at the temperatures with about 200 K lower than that of the one without Ir species as evidenced by the observations of TPR and in-situ Raman characterizations. The XPS results indicated that the large parts of Co3O4 in the sample of Co–Ir/SiO2 were reduced to Co0, but only small parts of that were reduced to Co0 in the sample of Co/SiO2 under flowing 5%H2/Ar at 673 K. The CO chemisorptions revealed that the irreversible uptakes of CO on the reduced Co–Ir/SiO2 sample was much higher than those on the reduced Co/SiO2 and Ir/SiO2, and also higher than the combination of that on the reduced Co/SiO2 and Ir/SiO2, respectively. The experimental data suggested that the presence of Ir played a key role in the reduction of Co3O4 to Co0 through a strong interaction between them and that the amount of Co0 at the catalyst surfaces was correlated to the activity and more importantly to the UOL selectivity.  相似文献   

20.
Spinel zinc manganese oxide (ZnMn2O4) nanorods were successfully prepared using the previously synthesized α-MnO2 nanorods by a hydrothermal method as template. The nanorods were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, UV-Vis absorption, X-ray photoelectron spectroscopy, surface photovoltage spectroscopy, and Fourier transform infrared spectroscopy. The ZnMn2O4 nanorods in well-formed crystallinity and phase purity appeared with the width in 50-100 nm and the length in 1.5-2 μm. They exhibited strong absorption below 500 nm with the threshold edges around 700 nm. A significant photovoltage response in the region below 400 nm could be observed for the nanorods calcined at 650 and 800°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号