首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CrN/CrAlN and Cr/CrN/CrAlN multilayers were grown with dual RF magnetron sputtering. The application of these multilayers will be wood machining of green wood. That is why ball-on-disc and electrochemical tests in NaCl aqueous solution were realized to elucidate the tribological and corrosion behavior of these coatings as they will be exposed to wear and corrosion during wood machining process. The samples/alumina and samples/WC coupling showed different wear mechanisms. The 300 nm thick Cr/CrN/CrAlN multilayer demonstrated the best tribological behavior and corrosion resistance. The influence of growth defects on corrosion resistance has been shown.  相似文献   

2.
The effect of deposition conditions on the tribological behavior of titanium nitride thin films produced by reactive magnetron sputtering has been studied. Dependences of the hardness, the width of the friction track, the friction coefficient, and the volume wear of the TiN films on the N2 reactive gas flow rate have been obtained. Conditions of deposition under which the coatings with the best tribological characteristics are formed have been determined.  相似文献   

3.
The tribological properties of various PVD‐deposited coatings (vacuum arc method) have been tested, both single‐layer coatings (TiN, CrN, Ti(C,N), and Cr(C,N)) and multilayer coatings (Cr(C,N)/CrN/Cr and CR(C,N)/(CrN+Cr2N)/CrN/Cr). An unlubricated ball‐on‐disc tribosystem was used in which an Al2O3 ball is pressed against a coated steel disc rotating in the horizontal plane. A novelty of the method is the removal of wear debris from the contact zone using a draught of dry argon. This improves the repeatability of the test results and the stability of the tribological characteristics. It is shown that CrN coatings exhibit the best antiwear properties and Ti(C,N) the worst. Multilayer coatings have better antiwear properties than single‐layer ones. The friction coefficients for CrN and Cr(C,N) coatings are much smaller than for the commonly used TiN. A correlation has also been found between the physical properties of the coatings tested (adhesion of the coating to the substrate assessed in scratch tests, and coating hardness) and their antiwear properties. An improvement in coating‐substrate adhesion results in wear reduction, while greater hardness (causing a coating embrittlement increase and a change in the wear mechanism) brings about greater wear. There is no correlation between the physical properties and the friction coefficients of the coatings tested.  相似文献   

4.
为研究不同基体材料对CrN/CrCN多层涂层在海水环境下摩擦学性能的影响,采用多弧离子镀技术在H65铜合金、TC4钛合金和316L不锈钢基体上沉积CrN和CrN/CrCN多层复合涂层,通过XRD、SEM等技术对涂层的结构进行表征,通过结合力、硬度测试和摩擦磨损试验分析涂层在大气环境和海水环境下的力学性能和摩擦学性能。结果表明:CrN/CrCN多层涂层的内应力相对于CrN明显减小,且硬度相对CrN涂层较高;TC4钛合金为基体的涂层结合力较好且涂层硬度较高;在海水环境下涂层的摩擦因数相对于大气环境都有较大幅度下降,其中,以TC4钛合金和316L不锈钢为基体的涂层摩擦因数较小;以H65铜合金为基体的2种涂层在海水中的磨损率高于大气中,而以TC4合金、316L不锈钢为基体的CrN/CrCN多层涂层在海水环境下的磨损率低于大气环境;TC4钛合金为基体的CrN/CrCN多层涂层在海水环境下具有最低的磨损率,表明TC4钛合金更适合作为海水环境下CrN/CrCN多层涂层耐磨的基体材料。  相似文献   

5.
Zhang  Xiaoling  Prakash  B.  Lauwerens  W.  Zhu  Xiaodong  He  Jiawen  Celis  J.-P. 《Tribology Letters》2003,14(2):131-135
The investigation of the tribological performance of MoS2-based coatings in air of high humidity is critical for the future use of such low-friction and high-wear-resistant coatings in ambient air. Sulfur-deficient MoS x coatings with a basal plane (x = 1.3) and a random (x = 1.8) crystallographic orientation were produced by planar magnetron sputtering. The coefficient of friction and the wear loss of MoSx coatings in comparison with TiN and amorphous TiB2 coatings were investigated in bi-directional sliding fretting tests performed in ambient air of different relative humidity. The wear rate expressed as a volumetric loss per unit of dissipated energy was determined. From these results, the best friction and wear performance was achieved with basal-plane-oriented MoS x coatings tested at a relative humidity in the range of 10-50%. A coefficent of friction of 0.06-0.08 and a wear rate of 4 × 103 m3J-1, at a normal load of 1 N and a fretting frequency of 10 Hz, were recorded for that type of MoS x coatings.  相似文献   

6.
Fei Zhou  Yuan Wang  Feng Liu  Yuedong Meng  Zhendong Dai 《Wear》2009,267(9-10):1581-1588
It is evident that the micro-arc oxidation (MAO) ceramic coatings often exhibit relatively high friction coefficients as sliding against many mating materials. To reduce the friction coefficient for the MAO coatings, the duplex MAO/CrN coatings were deposited on 2024Al alloy using combined micro-arc oxidation and reactive radio frequency magnetron sputtering. The microstructure and phase of the duplex coatings were observed and determined using scanning electron microscope (SEM) and X-ray diffraction (XRD), respectively. The friction and wear behaviors of the duplex coatings sliding against Si3N4 balls in air, water and oil were investigated using a ball-on-disk tribometer. The wear rate of the duplex coating was determined by non-contact optical profilometer and the wear tracks on the duplex coatings were observed by SEM. The results showed the CrN coatings mainly consisted of Cr, CrN and Cr2N phases. The duplex coatings/Si3N4 tribopair exhibited the highest friction coefficient in air, while displayed the lowest friction coefficient in oil. When the normal load and the sliding speed increased, the friction coefficient in air increased from 0.65 to 0.72, whereas decreased from 0.58 to 0.36 in water and 0.20 to 0.08 in oil. The specific wear rates for the duplex coatings in air were higher than those in oil. In comparison to the MAO coatings, the duplex MAO/CrN coatings displayed excellent tribological properties under the same conditions.  相似文献   

7.
Morphology, structure, and tribological behavior of magnetron co-sputtered TiN/Ag nanocomposite coatings deposited at 150 °C with an Ag content in the range of 7–45 at.% were characterized. The coatings show a columnar structure with embedded Ag crystallites of 3–50 nm in diameter, where the columns are characterized by a layered structure with Ag-poor and Ag-rich layers. These layers originate from sample rotation during deposition, where the layer thickness increases with increasing Ag content. These Ag layers become continuous over a critical Ag content. At room temperature the friction coefficient is determined by the film structure, whereas friction and wear at high temperature depend on segregation of Ag to the surface.  相似文献   

8.
The paper presents mechanical and tribological properties of CrCN/CrN and CrCN/CrN+ta-C multilayer coatings. Tetrahedral carbon (ta-C) layer formed using the pulse cathodic arc evaporation method are characterised by high hardness –45 GPa, very low friction coefficient—below 0.1 and a low wear rate −1.3×10−17 m3N−1 m−1 providing promising application perspectives.Three sets of tools—planer knives for cutterheads were tested: uncoated (as reference), tools with a CrCN/CrN coating and tools with CrCN/CrN coating with additional friction-reducing tetrahedral carbon (ta-C) layer. The results of investigations indicate that the “tool life” depends on the type of coating and machining conditions. The blades covered with CrCN/CrN multilayer coating after machining of dry, seasoned pine timber showed a twofold increase of durability, and knives covered with CrCN/CrN+ta-C multilayer coating were characterised further by about 15% higher durability. Durability of knives tested in the course of rounding of wet pine timber, despite relatively high depth of machining was improved and for cutters with a CrCN/CrN coating increased more than twice, while the use of the additional ta-C layer on the multilayer coating improved durability by almost 5 times.  相似文献   

9.
The purpose of this study is to investigate comparative tribological behaviors of Cu-doped TiN, CrN, and MoN coatings under a wide range of dry sliding conditions. TiN and CrN coatings have been developed and used by industry in numerous tribological applications including, machining, manufacturing and transportation. In contrast, MoN has attracted very little attention as a tribological coating in the past, despite being much harder than both TiN and CrN. In this paper, we will mainly concentrate on the Cu-doped versions of these coatings whose tribological properties have not yet been fully explored. The results of this study have confirmed that the addition of Cu into TiN, CrN and MoN coatings has indeed modified the grain size and morphology, but had a beneficial effect only on the friction and wear behavior of MoN. The tribological behavior of CrN did not change much with the addition of Cu but that of TiN became worse after Cu additions. Raman spectroscopy technique was used to elucidate the structural and chemical natures of the oxide films forming on sliding surfaces of Cu-doped TiN, CrN and MoN films. The differences in the friction and wear behavior of Cu-doped TiN, CrN, and MoN is fully considered and a mechanistic explanation has been provided using the principles of a crystal chemical model that can relate the lubricity of complex oxides to their ionic potentials.  相似文献   

10.
The design of anti-friction coatings able to perform well in different wear conditions without lubricants requires a combination of adequate hardness and toughness, good adhesion, a low friction coefficient and a low wear rate. Recently introduced metaldiamond like carbon (DLC) coatings produced by magnetron sputtering of metals from targets, which are to a controlled extent covered with carbon from the chamber atmosphere, can be a step towards the achievement of such a combination. These coatings consist of an amorphous a:CH matrix with the possible incorporation of metal (Ta, W, Nb, Ti), metal carbide and/or graphite grains. Previous studies of Tix%-DLC coatings showed their good protective properties against abrasive, impact and single scratch wear, as well as a requirement for supporting interlayers to successfully apply such coatings to low-cost steels. In the present work an example of the selection of metal-ceramic Ti-TiN-TiCN supporting interlayers is given based on studies of their morphology, structure and mechanical properties. This resulted in the development of Ti-TiN-TiCN-[TiC-(Tix%-DLC)] multilayer composite coatings. Several coatings were prepared with the same supporting interlayer and a variation in the preparation of the Tix%-DLC layer. Ball-on-disc experiments were carried out to investigate these coatings in conditions of sliding wear against steel and cemented tungsten carbide balls. CrN, TiN and TiCN coatings were also deposited and tested in the same conditions to provide a reference. Low friction coefficients (below 0.2 at an air humidity of 50% RH) in combination with low normalized wear rates were found for multilayer coatings with upper Ti20%-DLC and Ti35%-DLC layers.  相似文献   

11.
The Cr containing amorphous carbon coatings (Cr/a-C) with varying Cr content were deposited using unbalanced magnetron sputtering. The results revealed that the chromium carbide nano-clusters were formed when the Cr content exceeded 4.9 at%. The critical load increased while the hardness decreased after the Cr element incorporation. Although the low Cr containing Cr/a-C coatings (≤4.9 at%) exhibited similar friction coefficient with a-C coatings, but the initial friction coefficient, running-in distance and wear rate of SUS440C balls all decreased. However, the Cr/a-C coatings with high Cr content (11.98–14.09 at%) would worsen the tribological properties because chromium carbides acted as abrasive wear particles during tribotests.  相似文献   

12.
At present, one of the most important problems in automobile engines and transmission components is due to tribological processes (friction and wear) that in many cases come accompanied by corrosion processes due to the environmental conditions to which these materials are exposed during their lifetime. Both mechanisms can be minimized by means of the development and the application of adequate coatings that combine low friction with a high corrosion and wear resistance.The new tendencies in industrial PVD coatings to improve their properties are focused in the development of new multilayer and nanostructured coatings. These structures allow in a relatively simple way enhancing their tribological properties and the corrosion resistance that can not be reached by means of the traditional monolayer coatings. The background of this type of coatings consists of the stacking up of several layers with good individual tribological and mechanical properties, but every individual layer has a thickness that can be from hundreds of nanometres down to only 5-10 nm. The properties of these nanostructured coatings depend strongly on the thickness modulation of every individual layer.Concerning PVD coatings, the chrome nitride coatings have demonstrated to possess excellent wear resistance properties. In this work, multilayer Cr/CrN coatings with different individual layer thickness have been deposited on substrates of steel F1272 and silicon. The deposition has been carried out by means of the cathodic arc method alternating an atmosphere of pure Ar with a reactive mixture of N2/Ar. The multilayers obtained have been analyzed by means of Glow Discharge Optical Emission Spectroscopy (GD-OES) and in some cases by means of FE-SEM obtaining bilayer (Cr/CrN) periods of the order of 220 and 45 nm. The coating characterization has been complemented with hardness and composition measurements as well as by the performance of several wear and corrosion-wear tests.  相似文献   

13.
A new method has been developed for tribological testing of thin, hard antiwear coatings, using a ball‐on‐disc tribosystem, under conditions of dry sliding. In this, an Al2O3 ball is pressed against a coated steel disc. Wear debris is removed from the contact zone by a stream of dry argon in this novel method. This improves the stability of the tribological properties and the repeatability of the test results. All test conditions are precisely defined, in particular: the type of motion, air relative humidity, ambient temperature, sliding speed, load, tribosystem spatial configuration, substrate material, substrate hardness and roughness, and coating thickness. The method developed has been used to test various physical vapour deposition coatings (deposited by the vacuum arc method), i. e., single‐layer TiN, Ti(C,N), CrN, and Cr(C,N), and multilayer Cr(C,N)/CrN/Cr and Cr(C,N)/(CrN+Cr2N)/CrN/Cr. It is shown that CrN coatings exhibit the best antiwear properties, and Ti(C,N) the worst. Friction coefficients for CrN and Cr(C,N) coatings are much lower than for the more commonly used TiN. Multilayer coatings have better antiwear properties than single‐layer ones.  相似文献   

14.
Surface engineering with applied coating plays a vital role in any industrial application. These coatings are meant for better mechanical and tribological characteristics when applied on to the materials. The major challenge in selecting a suitable coating strategy is their input process parameters. There are several parameters which influences the coating properties, but it is hard to choose one of them and ignoring others. Multilayers of tungsten nitride are attracting great interest to modulate their tribological and mechanical properties through physical vapour deposition process due to their wide application range. These multilayer nitride films were deposited through unbalanced reactive magnetron sputtering technique. The tribological tests were performed on a pin-on-disc tribometer at room temperature and it has been observed that friction and wear values reduce drastically while applying multilayer coatings. Later, artificial neural network (ANN) is employed to optimize the tribological properties of sputtered coatings.  相似文献   

15.
500 nm-thick films are deposited on austenitic stainless steel by neutral (Ar+) or reactive (N+) ion beam sputtering of Ni or NiTi targets, with (or without) high energy 160 keV-Ar+ ion beam assistance. Most of the time the coatings are nanocrystalline and induce a large (excellent in some conditions) increase of the wear resistance. Only Ar+ ion beam sputtering of a NiTi target gives an amorphous deposit which does not improve the substrate tribological properties. The hardness and wear resistance of ion beam assisted films are larger than those obtained with non-ion beam assisted coatings. The presence of a hard TiN phase inside a ductile Ni phase, of grains with preferential orientation beneficial to slip, as well as film densification are the main factors which increase the wear resistance. The best results are obtained when the structure is composed of two phases, Ni and TiN. The TiN phase strengthens the already good tribological Ni properties and the Ni ductility induces mechanical accommodation during the friction process.  相似文献   

16.
Titanium-containing diamond-like carbon (Ti-DLC) coatings were deposited on steel with a close-field unbalanced magnetron sputtering in a mixed argon/acetylene atmosphere. The morphology and structure of Ti-DLC coatings were investigated by scanning electron microscopy, transmission electron microscopy, atomic force microscopy and Raman spectroscopy. Nanoindentation, nanoscratch and unlubricated wear tests were carried out to evaluate the hardness, adhesive and tribological properties of Ti-DLC coatings. Electron microscopic observations demonstrated the presence of titanium-rich nanoscale regions surrounded by amorphous carbon structures in Ti-DLC coating. The Ti-DLC coatings exhibit friction coefficients of 0.12–0.25 and wear rates of 1.82 × 10?9 to 4.29 × 10?8 mm3/Nm, depending on the counterfaces, sliding speed and temperature. The Ti-DLC/alumina tribo-pair shows a lower friction coefficient than the Ti-DLC/steel tribo-pair under the identical wear conditions. Increasing the test temperature from room temperature to 200 °C reduces the coefficient of friction and, however, clearly increases the wear rate of Ti-DLC coatings. Different wear mechanisms, such as surface polishing, delamination and tribo-chemical reactions, were found in the tribo-contact areas, depending on different wear conditions.  相似文献   

17.
采用中频磁控溅射和电弧离子镀两种方法组合在硬质合金基体上沉积ZrN/TiN复合涂层,采用切削试验来研究ZrN/TiN涂层对硬质合金刀具切削性能的影响。结果表明:ZrN/TiN复合涂层提高了硬质合金刀具的硬度,涂层刀具的显微硬度受基体硬度的影响,基体YG6、YT14涂层后的显微硬度分别可达2300HV,2500HV;使涂层刀具切削力的降低了20%;提高了涂层刀具的耐磨损能力。  相似文献   

18.
The low hardness and poor tribological performance of aluminum alloy as moving component greatly restricts their wide applications in automotive fields. In this letter, an attempt to deposit gradient Ti/TiN/Si/(TiC/a-C:H) multi-layer on aluminum alloy is thus effectively performed by a combined arc ion plating and magnetron sputtering process based on the concept of involving coatings with a functionally graded interface. Multi-layered structure within DLC-based coatings has shown to significantly improve the load-bearing capacity, anti-wear and self-lubricating ability of Al alloys. The friction coefficient of gradient DLC-based coatings decreased to 0.18 under dry sliding condition while kept at 0.05 under the oil-lubricated conditions. The wear rate of gradient DLC multilayers was lower by two and even three orders of magnitude when compared with Al alloys both under dry wear and oil-lubricated conditions. Such gradient DLC-based coatings with good adhesion strength, high hardness, and excellent tribological performance are considered as potential protective surfaces of Al alloys for engine parts.  相似文献   

19.
Nano-structured TiAlCrYN coatings, grown by unbalanced magnetron sputtering on various steel substrates, exhibited friction coefficients 0.6–0.8 and wear coefficients 10−16–10−15 m3 N−1 m−1 in dry sliding wear tests. This article reports comprehensive worn surface analyses using SEM, TEM, EDX, EELS and Raman spectroscopy. A ~80 nm thick tribofilm formed on the TiAlCrYN worn surface was found to have dense amorphous structure and homogeneous oxide composition of Cr0.39Al0.19Ti0.20Y0.01O0.21. Viscous flow of the amorphous tribofilm was dominant in causing the high friction coefficient observed. The coatings showed combined wear mechanisms of tribo-oxidation and nano-scale delamination.  相似文献   

20.
A new crossed-cylinders tribo-tester is proposed. This tribo-tester can decrease the tendency of the chatter vibration. The tribological properties of coatings against copper is evaluated with this tribo-tester. The wear rate of TiN, TiC and TiCN rubbing against copper is higher than the substrate high speed tool steel: SKH51 (JIS). The catalytic action of copper for oxidation of Ti-based coatings is a main reason of this high wear rate of TiN, TiC and TiCN rubbing against copper. The wear rate of CrN rubbing against copper is in a very low level because CrN shows the excellent oxidation resistance and Cr2O3 film formation decreases the wear loss of CrN coating.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号