首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Polymer-bound Schiff base ligand 2 was prepared by oxidation of chloromethylated polystyrene to aldehydic polystyrene 1 and then reaction with ethylene diamine. The functionalized polystyrene 2 was used to immobilize Mo(CO)6 and polymer-bound molybdenum carbonyl Schiff base catalyst 3 was produced. This supported catalyst shows high activity in epoxidation of various alkenes in the presence of tert-butylhydroperoxide (TBHP). The supported molybdenum catalyst can be recovered and reused for eight times without loss in its activity.  相似文献   

2.
Magnetic nanoparticles, Fe3O4, have been prepared and functionalized by (N-(3-(triethoxysilyl)propyl)isonicotinamide) and characterized by infrared spectroscopy, thermal analysis (TGA/DTA), X-ray powder diffraction, scanning electron microscopy, elemental analysis and BET surface area measurement. The functionalized Fe3O4 nanoparticles were used as a support to anchor metalloporphyrin. Application of immobilized metalloporphyrin as a heterogeneous catalyst in the oxidation of cyclohexene was explored. Effect of various parameters such as solvent and temperature on immobilization process and also various parameters (solvent, time, oxidant and axial group effect) on oxidation of cyclohexene has been investigated. The result showed that the immobilized metalloporphyrin on functionalized magnetic nanoparticles is an efficient and reusable catalyst for oxidation of cyclohexene.  相似文献   

3.
Hydroxyapatite-encapsulated γ-Fe2O3 nanoparticles functionalized with diethyl aliphatic amine basic ionic liquids were synthesized and used as efficient magnetic catalysts for aqueous Knoevenagel condensation reactions. Quantitative conversion of the reactants was achieved under mild conditions; recycle of the catalyst, through convenient magnetic decantation, shows non-significant loss in activity. In comparison with the controlled experiments catalyzed by homogeneous basic ionic liquids and the basic ionic liquid-modified polystyrene resin, the excellent performance of the magnetic catalyst was attributed to the cooperativity between the base sites generated by framework HAP and the supported basic ionic liquids.  相似文献   

4.
In this study, immobilization of laccase (L) enzyme on magnetite (Fe3O4) nanoparticles was achieved, so that the immobilized enzyme could be used repeatedly. For this purpose, Fe3O4 nanoparticles were coated and functionalized with chitosan (CS) and laccase from Trametes versicolor was immobilized onto chitosan‐coated magnetic nanoparticles (Fe3O4‐CS) by adsorption or covalent binding after activating the hydroxyl groups of chitosan with carbodiimide (EDAC) or cyanuric chloride (CC). For chitosan‐coated magnetic nanoparticles, the thickness of CS layer was estimated as 1.0–4.8 nm by TEM, isoelectric point was detected as 6.86 by zeta (ζ)‐potential measurements, and the saturation magnetization was determined as 25.2 emu g?1 by VSM, indicating that these nanoparticles were almost superparamagnetic. For free laccase and immobilized laccase systems, the optimum pH, temperature, and kinetic parameters were investigated; and the change of the activity against repeated use of the immobilized systems were examined. The results indicated that all immobilized systems retained more than 71% of their initial activity at the end of 30 batch uses. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

5.
In this work, chloromethylated crosslinked polystyrene microspheres (CMCPS microspheres) were used as starting carrier, and a new immobilized bidentate Schiff base oxovanadium (IV) complex catalyst was prepared. The chloromethyl groups of CMCPS microspheres were first transformed into aminomethyl groups via Delepine reaction with hexamethylene tetramine (HMTA) as reagent, obtaining aminomethylated (AM) microspheres AMCPS. And then the Schiff base reaction between the primary amino group of AMCPS microspheres and salicylaldehyde (SA) was allowed to be conducted, resulting in Schiff base-type resin microspheres, SAAM-CPS, on which bidentate Schiff base ligand SAAM were chemically anchored. Subsequently, the coordination reaction between the ligand SAAM of SAAM-CPS microspheres and vanadyl sulfate (VOSO4) was carried out, obtaining a new immobilized bidentate Schiff base-type oxovanadium (IV) complex, CPS-[VO(SAAM)2] microspheres, namely a new heterogeneous oxovanadium (IV) complex catalyst was prepared. On the basis of fully characterizing the microspheres CPS-[VO(SAAM)2], they were used in the catalytic oxidation of ethyl benzene with molecular oxygen. The experimental results show that in the oxidation reaction of ethylbenzene with molecular oxygen as oxidant, the heterogeneous oxovanadium (IV) complex catalyst, CPS-[VO(SAAM)2], has high catalytic activity and excellent catalytic selectivity. Under the mild conditions such as at ordinary pressure of dioxygen and at a relatively low temperature of 110 °C, ethyl benzene can be transformed to acetophenone as a single product with a yield of 43%. It was found that the reaction temperature and the used amount of the solid catalyst effect on the oxidation reaction greatly. The catalyst CPS-[VO(SAAM)2] has excellent recycle and reuse property.  相似文献   

6.

Abstract  

In this work the syndiotactic polystyrene copolymer, poly (styrene-co-p-methylstyrene) was prepared by the copolymerization of styrene and p-methylstyrene with cyclopentadienyltitanium trichloride/methylaluminoxane catalyst. This copolymer was functionalized with silyl-hydride groups. The structure of copolymer and functionalized copolymer were characterized by FT-IR, 1H-NMR and 13C-NMR spectroscopy. The obtained results revealed that the functionalization reaction successfully proceeds at low temperatures. Tethering of half-titanocene complex on polymeric support was done by the hydrosilylation reaction of 1-allylindenyltrichlorotitanium with silyl-hydride functionalized copolymer in the presence of Karstedt catalyst as a coupling reagent. The polymer-supported catalyst was tested for syndiospecific polymerization of styrene using methylaluminoxane as a cocatalyst. The results of styrene polymerization showed that the polymer-supported catalyst exhibited high activity for syndiospecific polymerization of styrene. The polymer prepared with supported catalyst was characterized by carbon nuclear magnetic resonance (13C-NMR) and differential scanning calorimetry (DSC). The results confirmed the syndiotacticity of obtained polymers. X-ray diffraction (XRD) analysis showed the δ-form crystalline structure of obtained syndiotactic polystyrene.  相似文献   

7.
A novel catalytic system based on Au nanoparticle functionalized magnetic mesoporous silica was prepared as (α-Fe2O3)-MCM-41-HS-Au. This material was obtained through the reaction of ordered mesoporous silica-coated magnetic nanoparticles (α-Fe2O3)-MCM-41, (3-mercaptopropyl) trimethoxysilane (MPTMS) and HAuCl4. This catalyst was extensively characterized by various techniques such as SEM, TEM, XRD, EDX, IR and N2-sorption isotherm. Very uniform dispersion and ordered mesopores of (α-Fe2O3)-MCM-41-SH (about 2–3 nm) causes Au nanoparticles to be distributed very finely on the pore surfaces, resulting in a very useful and robust magnetically recyclable catalyst for water-medium and solvent-free alkyne hydration.  相似文献   

8.

Abstract  

Three types of porous polymer microspheres immobilized with cobalt porphyrins appending p–H, p-Cl and p-NO2 phenyl substituents (designated as CoPP-GMA/MMA, CoCPP-GMA/MMA and CoNPP-GMA/MMA, respectively) were prepared. Their catalytic activities on the oxidation of 2-naphthol to 2-hydroxy-1,4-naphthoquinone by molecular oxygen were investigated in alkaline methanol. The experimental results showed that the porous microsphere supported cobalt porphyrin catalysts could effectively activate molecular oxygen, and 2-naphthol was selectively oxidized to 2-hydroxy-1,4-naphthoquinone with high conversion in alkaline methanol. A phenomenon of distance-dependent catalytic activity was observed and a critical distance of 3.8 nm between porphyrins was determined for the porous polymer microsphere supported catalyst. More interestingly, the activity of the recycled catalyst increased gradually with the increased times of reuse. These results may be helpful in designing highly efficient metalloporphyrin catalysts.  相似文献   

9.
Poly(N-vinylimidazole) (PVI) was grafted onto magnetic Fe3O4 nanoparticles through siloxane bonds to produce PVI-grafted Fe3O4 nanoparticles (shortened as Fe3O4-g-PVI). The amount of imidazolyl groups in Fe3O4-g-PVI was estimated to be 1.16 mmol/g by elemental analysis and thermal gravimetric analysis. The Fe3O4-g-PVI coordinated with Cu(II) to form the immobilized Cu(II)-PVI complex. The stoichiometric ratio between imidazolyl groups in Fe3O4-g-PVI and Cu(II) was found to be 4 and the complex formation constant (K) was calculated to be 5.6 × 1014 mol−4 L4. The immobilized Cu(II)-PVI complex was employed to catalyze the oxidative polymerization of 2,6-dimethylphenol (DMP) in water and showed excellent C O/C C selectivity to form PPO. After polymerization, the immobilized Cu(II)-PVI complex catalyst was collected by an external magnetic field and reused in the next run with additional immobilized catalyst and copper ions. After three runs of oxidative polymerization of DMP, the recovery rate of the immobilized Cu(II)-PVI catalyst was above 95% and the yield of PPO maintained as high as 79.2% with the addition of supplementary catalysts. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

10.

Abstract  

This article describes the synthesis and some properties of a new phenol-based Schiff base oligomer and its metal complexes. First, Schiff base monomer, 2,3-bis[(2-hydroxy-naphtyl)methylene]diaminopyridine (HNMDAP) was synthesized by condensation of 2-hydroxy-1-naphtaldehyde with 2,3-diaminopyridine. Then, HNMDAP was oxidized to give its corresponding oligomer (OHNMDAP) in the presence of the oxidants such as H2O2, NaOCl and air in alkaline medium. Finally, OHNMDAP was converted into the chelates of some divalent metals. The resulting compounds were characterized by spectral (UV–vis and IR), thermal (TG), electrochemical (CV) techniques in addition to conductivity measurements. Both HNMDAP and OHNMDAP were also tested by some selected bacteria in vitro medium.  相似文献   

11.

Abstract  

This work describes a catalytic oxidation of glycerol using citrate-stabilized gold nanoparticles (citrate-AuNPs) having a mean diameter of 22 ± 3 nm. A careful product analysis was performed by mean of high-performance liquid chromatography, liquid chromatography–mass spectrometry and nuclear magnetic resonance spectroscopy. Effects of reaction temperature, oxygen pressure, catalyst and reactant concentration, and NaOH/glycerol molar ratio on glycerol conversion, and product yields were investigated. The glycerol conversion and glyceric acid yield were optimum when the oxidation was performed using 0.6 M glycerol and NaOH at 80 °C under 3 bar of O2 pressure in the presence of 50 ppm citrate-AuNPs catalyst for 3 h.  相似文献   

12.
Co/Rh heterobimetallic nanoparticles were prepared from cobalt‐rhodium carbonyl clusters [Co2Rh2(CO)12 and Co3Rh(CO)12] and immobilized on charcoal. HR‐TEM revealed that the size of the heterobimetallic nanoparticles was ca. 2 nm and ICP‐AES analysis showed a 2 : 2 and a 3 : 1 cobalt‐rhodium stoichiometry (Co2Rh2 and Co3Rh1) in the heterobimetallic nanoparticles. The Co/Rh heterobimetallic nanoparticles immobilized on charcoal were used as a catalyst in the Pauson–Khand‐type reaction under 1 atm of CO. The catalytic reactivity was highly dependent upon the ratio of Co : Rh with the highest reactivity being observed when the ratio was 2 : 2 (Co2Rh2). The Co2Rh2 immobilized catalyst is quite an effective catalyst for intra‐ and intermolecular Pauson–Khand‐type reactions. When the immobilized Co2Rh2 catalyst was used as a catalyst in the Pauson–Khand‐type reaction in the presence of an aldehyde instead of carbon monoxide, the catalytic system was highly efficient. When the reaction was carried out in the presence of chiral diphosphines, ee values up to 87% were observed. The catalytic system can be reused at least five times in the presence of chiral diphosphines without loss of catalytic activity and enantioselectivity. The addition of Hg(0), a known heterogeneous catalyst poison, completely inhibits further catalysis. Thus, an environmentally friendly and sustainable process was developed.  相似文献   

13.

Abstract  

The Keggin phosphotungstic acid, H3PW12O40 (HPW), was successfully immobilized on the surface of mesostructured LaSBA-15 by means of chemical bonding to aminosilane groups. The catalysts were characterized by elemental analysis, N2 adsoption, TEM, DRS-UV, and FTIR spectroscopy. Characterization results suggest that the surface area decreased after grafting amino groups to silica and the structures of heteropolyanions on amine-modified LaSBA-15 was maintained. Their catalytic behaviors were investigated in the alkylation of o-xylene with styrene. Among the functionalized catalysts, when the content of amino-groups was suitable, it had the best catalytic performances in terms of yield and stability. It is worth mentioning that the catalysts could be used repeatedly without loss of the activity and selectivity during several catalytic cycles. The good stability can be attributed to the strong interaction between the amino groups on the surface of LaSBA-15 and HPW anions.  相似文献   

14.
The plasmonic effects of infiltrated silver (Ag) nanoparticles, with different contents, inside a nanostructured TiO2 film on the photovoltaic performance of dye‐sensitized solar cells (DSSCs) are explored. The synthesized Ag nanoparticles are immobilized onto deposited TiO2 nanoparticles by a new strategy using 3‐mercaptopropionic acid (MPA), a bifunctional linker molecule. Transmission electron microscope (TEM) images show that monodispersed Ag and polydispersed TiO2 nanoparticles have an average diameter of 12 ± 3 nm and 5 ± 1 nm, respectively. Moreover, Fourier transform infrared spectroscopy (FTIR) analysis reveals that Ag nanoparticles were successfully functionalized and capped with MPA. Optical studies on the MPA‐capped Ag nanoparticles inside TiO2 film show an increase in the total absorbance of the electrode. Moreover, EIS measurements confirm that MPA‐capped Ag nanoparticles inhibit the charge recombination and improve the stability of nanoparticles in I3?/I? electrolyte. The DSSC assembled with optimal content of MPA‐capped Ag nanoparticles demonstrated an enhanced power conversion efficiency (8.82% ± 0.07%) compared with the pure TiO2 (7.30% ± 0.05%). The increase in cell efficiency was attributed to the enhanced dye light absorption in strength and spectral range due to the surface plasmon resonance of MPA‐capped Ag nanoparticles in the photoanode.  相似文献   

15.
The MoO3/SiO2 catalysts containing different surface molybdenum species were prepared by a sol–gel method, and the effects of the preparation condition and MoO3 loading on the surface molybdenum species and property of MoO3/SiO2 were studied. The XRD, FT-IR, UV–vis and Raman spectroscopies were used to characterize the surface molybdenum species, and temperature-programmed desorption of NH3 adsorbed on a catalyst was used to detect the surface acidic properties. The results show that, there were the dispersed polymolybdate, α-MoO3, β-MoO3, monomeric molybdenum species and silicomolybdic acid on the MoO3/SiO2 catalyst, and their distributions and subsistence states were affected by the preparation condition and MoO3 loading. Different molybdenum species exhibit different catalytic activities for the epoxidation of propylene with cumene hydroperoxide. In the 15 wt% MoO3/SiO2 catalyst synthesized at pH 9.1 and dried appropriately, there are the small size β-MoO3 and monomeric molybdenum species that they are mainly effective catalyst components for the epoxidation of propylene. Using this catalyst, the ~100% conversion of cumene hydroperoxide and ~100% selectivity to propylene oxide can be obtained in the tert-butyl alcohol solvent at 2.6 MPa and 80 °C for 4 h.  相似文献   

16.

Abstract  

In this work, we prepared a new magnetically recoverable CoO catalyst through the deposition of the catalytic active metal nanoparticles of 2–3 nm on silica-coated magnetite nanoparticles to facilitate the solid separation from liquid media. The catalyst was fully characterized and presented interesting properties in the oxidation of cyclohexene, as for example, selectivity to the allylic oxidation product. It was also observed that CoO is the most active species when compared to Co2+, Co3O4 and Fe3O4 in the catalytic conditions studied.  相似文献   

17.
In this study, we developed an original approach for preparing cellulose-coated magnetite nanoparticles (NPs). Two novel Schiff bases (PDA-g-DAC) and [Bz-(PDA-g-DAC)] were synthesized via condensation reactions of periodate oxidized micro-crystalline cellulose (DAC) with o-phenylene diamine (PDA) to obtain its azomethine derivative with 85% yield. Subsequently, the functionalization of (PDA-g-DAC) with benzil (Bz) yields the tetraaza macrocycle [Bz-(PDA-g-DAC)]. The physicochemical characterization of the condensation products was performed using 13CNMR, FTIR, ATG, DSC, and X-ray diffraction techniques. Magnetic nanomaterial-based Schiff base cellulose was successfully prepared using in situ chemical co-precipitation of coordinated ferric and ferrous ions in cellulose Schiff base matrix under optimized conditions, and then, its magnetic properties were characterized. The results demonstrated that the Fe3O4 NPs coated with [Bz-(PDA-g-DAC)] were homogeneously coated in the matrix under ultrasonic irradiation with the saturation magnetization of 69.50 emu g?1. In addition, XRD line broadening analysis showed that the average particle size of the NPs was 37.3 nm. Furthermore, FTIR spectra demonstrated that [Bz-(PDA-g-DAC)] concavity was anchored to magnetite Fe3O4 NPs through azomethine groups. Vibrating sample magnetometry (VSM) of [Bz-(PDA-g-DAC)@Fe3O4] magnetic nanocomposite samples showed the typical behavior of ferromagnetism. This study provided a green and facile method to inhibit magnetic nanoparticle aggregation. Activity results revealed that the prepared [Bz-(PDA-g-DAC)@Fe3O4] catalyst shows the maximum activity for degradation of Acid Yellow 17 (AY17) compared to other prepared catalysts. After degradation reaction, the [Bz-(PDA-g-DAC)@Fe3O4] catalyst was recovered from the reaction mixture via an external magnet and used for further five consecutive cycles with excellent catalytic activity, successively, which was comparable to the fresh catalyst. The catalyst degradation efficiency and its easy separation exhibited that [Bz-(PDA-g-DAC)@Fe3O4] catalyst is a promising material for the removal of AY17 from aqueous solutions in green chemistry perspectives.  相似文献   

18.
A copper(II) complex containing tetradentate N2O2 Schiff base ligand immobilized into aminopropyl-functionalised MCM-41 (mobile crystalline material number 41), was prepared and characterized by Fourier-transform infrared, X-ray diffraction, scanning electron microscopy, thermogravimetric analysis, N2 adsorption–desorption and inductively coupled plasma analysis techniques. The novel heterogeneous catalyst, MCM-41-pr-NH2-CuL, can be successfully applied for efficient and selective oxidation of different primary and secondary alcohols to the corresponding carbonyl compounds using hydrogen peroxide as an oxidant in acetonitrile at 60 °C. The effect of reaction parameters such as solvent, amount of catalyst, temperature and kind of oxidant on the oxidation of benzyl alcohol was also studied. The prepared catalyst could be recovered and reused four times without important loss of its catalytic performance. The heterogeneous MCM-41-pr-NH2-CuL catalyst was found to be catalytically more active in the oxidation of alcohols compared to the similar type of copper(II) Schiff base complex in homogeneous media under the same reaction conditions.  相似文献   

19.

Abstract  

Rhodium-catalysed asymmetric hydrogenation using P-donor ligands, such as new fluorinated (R)-BINOL and azadioxaphosphabicyclo[3.3.0]octane derivatives was carried out in different reaction media such as organic solvent (CH2Cl2), ionic liquid ([BMI][PF6]), supercritical carbon dioxide (scCO2) and [BMI][PF6]/scCO2 mixture. The best enantioselectivities were obtained in neat [BMI][PF6], allowing a recycling up to ten times without activity loss. However, the enantioselectivity was lost due to ligand leaching. The ionic liquid phase containing rhodium molecular species was supported on functionalized multi-walled carbon nanotubes in order to improve the recycling, but unfortunately the asymmetric induction was lost upon catalyst immobilization.  相似文献   

20.
An efficient catalyst for selective oxidation of alcohols was prepared by grafting the Cu(II) Schiff base complex onto the channels of mesoporous silica material SBA-15. The characterizations illustrated that the functionalized SBA-15 maintained the primary hexagonally ordered mesoporous structure, and the Cu(II) Schiff base complexes were bonded inside the mesoporous channels of SBA-15. The selective oxidation of benzyl alcohol was carried out in water phase with hydrogen peroxide. The C6H5CH2OH conversion could reach 98.5 % with 100 % of the selectivity to C6H5CHO under the optimum conditions. The catalyst could also react well on the selective oxidation of other primary alcohols.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号