首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
叶轮偏心将会引起轴流泵叶轮顶部间隙沿周向不均匀,从而导致附加的流动激励和噪声.利用计算流体力学商业软件Fluent模拟不同偏心度和间隙比的轴流泵非定常流场,研究周向非均匀间隙对泵内压强脉动及叶轮激励力的影响.结果表明:壁面压强脉动强度并不是在最小间隙处达到最大,而是出现在偏离最小间隙处约30°~60°的方向,并随着间隙比增大,脉动强度最大值发生位置逐渐向最小间隙处靠拢;同时,偏心造成的非均匀叶顶间隙引起了轴频处的压强脉动,在间隙比为2.5%下偏心度从0%增加到60%,轴频处的压强脉动相对增量为661.54%;叶轮受到的径向激励力时均值与偏心度呈线性关系,其斜率与间隙比的平方根成正比.  相似文献   

2.
针对喷水推进器斜流工况时叶轮内部的空化问题,采用SST k-ω湍流模型和Zwart空化模型,对不同斜流角下的喷水推进器流场特性进行了数值模拟,获得了斜流角对喷水推进器水力性能、叶片表面空泡分布以及叶顶间隙区空化分布等方面的影响特性。结果表明:斜流角〖JP2〗从0°逐渐增大至40°时,推进泵的质量流量、扬程增加,效率则递减,约减小了3%;随着斜流角增大,依次影响多个叶片表面的空化分布,叶片表面空化区域从吸力面进口边向出口处不断发展;叶顶尖隙内的泄漏流、叶顶泄漏涡及卷吸区的空化范围随斜流角的增大不断扩展,并发生相互干涉和混合,最后叶顶区空化趋于稳定状态;随着斜流角的增大,叶顶进口附近处的空化和涡量分布发展规律具有相似性。  相似文献   

3.
Numerical simulation of flow in centrifugal pump with complex impeller   总被引:1,自引:0,他引:1  
Based on the Navier-Stokes equations and the Spalart-Allmaras turbulence model, three dimensional turbulent flow fields in centrifugal pump with long-mid-short blade complex impeller are calculated and analyzed numerically. The relative velocity and pressure distributions in the flowpart are obtained. It is found that the flow in the passage of the complex impeller is unsymmetrical due to the joint action between volute and impeller. The back-flow region is at inlet of long-blade suction side, near middle part of long-blade pressure side and outlet of short-blade suction side. The flow near volute throat is affected greatly by volute. The relative velocity is large and it is easy to bring back flow at outlet of the complex impeller near volute throat. The static and total pressure rise uniformly from inlet to outlet in the impeller. At impeller outlet, the pressure periodically decreases from pressure side to suction side, and then the static pressure sharply rise near the throat. The experimental results show that the back flow in the impeller has an important influence on the performance of pump.  相似文献   

4.
叶顶喷气方案已经被认为是较好的控制涡轮动叶叶顶间隙流动的方法之一.燃气轮机经常运行在非设计工况下,因此对叶顶喷气在不同进口冲角工况下的控制效果进行了试验研究,共进行了五个不同的进口冲角,分别是-15°、-8.5°、0°(设计工况)、8.5°及12°下的喷气效果的分析.试验结果显示,在这五个不同的进口冲角工况下,叶顶喷气...  相似文献   

5.
Experiments were conducted to investigate the effect of impeller geometry and tongue shape on the flow field of cross flow fans. Three impellers (Ⅰ,Ⅱ,Ⅲ) having same outer diameter, but different radius ratio and blade angles were employed for the investigation. Each impeller was tested with two tongue shapes. Flow survey was carried out for each impeller and tongue shape at two flow coefficients, and for each flow coefficient at different circumferential positions. The flow is two-dimensional along the blade span except near the shrouds. The total pressure developed by the impellers in each case is found to be maximum at a circumferential position of around 270°. The total and static pressures at the inlet of impellers are more or less same regardless of impeller and tongue geometry, but they vary considerably at exit of the impellers. Impeller Ⅲ with tongue T2 develops higher total pressure and efficiency where as impeller Ⅱ with tongue T2 develops minimum total pressure. Higher diffusion and sma  相似文献   

6.
基于计算流体力学,对离心泵叶轮内部流场进行了数值模拟。采用有限体积中心格式、时间推进解法以及N-S方程计算。得到了叶轮压力分布等值线、叶轮相对速度矢量以及二次流分布,并进行详尽的分析,揭示了叶轮内部流动情况,为优化叶轮设计提供了理论依据和技术保障。  相似文献   

7.
In the current study, the flow behavior in an axial pump through changing the number of impeller blades is analyzed. Due to the number of blades being very important geometrical parameters in the pump, the study of the influence of various numbers of blades on flow and pressure pulsation in the pump is carried out using the computational fluid dynamics technique. The sliding mesh with the standard turbulence k‐ε model is used to investigate the unsteady flow with several flows and impeller blades. Pump performance prediction results with available experimental data indicate reasonable and good agreement with each other. Static pressure, shear stress, and different velocity compounds are qualitatively analyzed. Moreover, the fluctuation pressure and average pressure under different operating conditions and impeller blades are quantitatively investigated. The numerical results show that the impeller blade has a high impact on pressure, shear stress, magnitude velocity, axial velocity, radial velocity, tangential velocity, and average pressure. Furthermore, this numerical study provides good and useful information for the hydraulic design of axial pumps.  相似文献   

8.
The blade tip clearance flow in axial-flow pump is simulated based on three-dimensional N-S equations, RNG k -e turbulence model, and SIMPLEC algorithm. It shows that numerical results agree well with experiment data measured by 5-hole probe through validation. Flow fields at the blade tip and velocity distribution at the exit of rotor are analyzed in detail. The numerical results show that the increase in tip clearance reduces hydro-head, especially at small flow rate. Experiment equipment is also introduced.  相似文献   

9.
Unsteady tip clearance flow in an isolated axial compressor rotor   总被引:3,自引:0,他引:3  
Introduction Background It is well known that the rotor tip clearance flow has profound effects on the performance and stability of axial compressor (Wisler[1], Howard[2]). Numerous studies on the tip clearance flow were carried out in the past fifty years. Rain[3] proposed a model to predict the loss due to tip leakage flow assuming that the kinetic energy of the leakage flow velocity component normal to the mean chamber line would be dissipated. Lakshminarayana[4] developed a model to pre…  相似文献   

10.
Numerical analysis is conducted for the 3-dimensional impeller and vaneless diffuser of a small centrifugal com- pressor. The influence of impeller tip clearance on the flow field of the impeller is investigated. Detailed investigation on the leaking flow across the tip clearance of the impeller shows that the leaking flow rate is higher near the exit of the impeller than that near the inlet of the impeller. Based on this phenomenon, a new partially shrouded impeller is designed. The impeller is shrouded near the exit of the impeller. Numerical results show that the secondary flow region becomes smaller at the exit of the impeller. Better performance is achieved than that with the unshrouded impeller.  相似文献   

11.
A numerical study of the effect of discrete micro tip injection on unsteady tip clearance flow pattern in an isolatedaxial compressor rotor is presented,intending to better understand the flow mechanism behind stall control meas-ures that act on tip clearance flow.Under the influence of injection the unsteadiness of self-induced tip clearanceflow could be weakened.Also the radial migration of tip clearance vortex is confined to a smaller radial extentnear the rotor tip and the trajectory of tip clearance flow is pushed more downstream,So the injection is benefi-cial to improve compressor stability and increase static pressure rise near rotor tip region.The results of injectionwith different injected mass flow rates show that for the special type of injector adopted in the paper the effect ofinjection on tip clearance flow may be different according to the relative strength between these two streams offlow.For a fixed injected mass flow rate,reducing the injector area to increase injection velocity can improve theeffect of injection on tip clearance flow and thus the compressor stability.A comparison of calculations betweensingle blade passage and multiple blade passages validates the utility of single passage computations to investi-gate the tip clearance flow for the case without injection and its interaction with injected flow for the case with tipinjection.  相似文献   

12.
An experimental study is conducted to investigate the influences of blade tip winglet on the flow field of a compressor cascade. The tests are performed in a low speed linear cascade with stationary endwall, with three blade tip configurations, including the baseline tip, the suction-side winglet tip and the pressure-side winglet tip. The flowfield downstream of the cascade is measured using five-hole probe, from which the three-dimensional velocity field, vorticity field and pressure field are obtained. Static pressure measurements are made on the endwall above the blade row using pressure taps embedded in the plywood endwall. All measurements are made at both design and off-design conditions for tip clearance level of about 2 percent of the blade chord. The results revealed the incidence variation significantly affects the secondary flow and the associated loss field downstream of the cascade, where the tip leakage vortex and passage vortex exist as the major contributors on the field. The winglet geometry arrangements can change the trajectory of the tip leakage vortex. The suction-side winglet tip blade provides a lower overall total pressure loss coefficient when compared to the baseline tip blade and pressure-side winglet tip blade at all incidence angles.  相似文献   

13.
Unsteadiness of tip clearance flow with three different tip clearance sizes is numerically investigated in this paper. NASA Rotor 67 is chosen as the computational model. It is found that among all the simulated cases, the un- steadiness exists when the size of the tip clearance is equal to or larger than design tip clearance size. The relative total pressure coefficient contours indicate that region of influence by tip leakage flow augments with the increase of tip clearance size at a fixed mass flow rate. Root Mean Square contours of static pressure distribution in the rotor tip region are provided to illustrate that for design tip clearance (1.1% tip chord) the strongest fluctuating region is located on pressure side of blade near leading edge, while for the larger tip clearance (2.2% tip chord), it is in the region of the interaction between the shock wave and the tip leakage flow.  相似文献   

14.
Transient performance of fluid machinery during transient operating periods,such as startup and stopping,has been drawn more attentions recently due to the growing engineering needs.In this paper,the transient behavior of a prototype centrifugal pump with an open impeller during rapid startup period is studied experimentally.The variations of the rotational speed,flow rate,head,and shaft power during rapid startup period are recorded in experiments at different discharge valve openings.In addition,the non-dimensional flow rate and head are also used to analyze the transient behavior.The research result shows that the rise characteristic of the rotational speed is not basically changed by working points,while mainly depends on the startup characteristics of the driving motor.Compared with the rapid rise of the rotational speed,the flow rate rises slowly in the initial stage of startup.Moreover,the flow rate lags behind the rotational speed to rise to final stable value,and the delay becomes more severe with the increase of the discharge valve opening.The shaft power impact phenomenon generally exists in the process of startup.The non-dimensional analysis shows that the non-dimensional head is very high at the very beginning of startup,and quickly falls to the minimum,then gradually rises to final stable value,while the non-dimensional flow rate always shows the rise tendency during whole startup period.In conclusion,it is found from the non-dimensional results that the quasi-steady analysis is unable to accurately assess the transient flow during startup period.  相似文献   

15.
采用数值模拟方法研究机匣喷气量大小对涡轮间隙流动控制的影响。结果显示,在10%轴向弦长位位置喷气时,增大喷气量,喷气在间隙内轴向上影响范围增大,对间隙流阻塞作用增加,间隙涡出现位置推迟。同时减小了间隙涡、上通道涡区熵增,尤其是上通道涡区损失大幅减小,并减弱机匣喷气引起的气流偏转不足/过偏现象。叶顶压力面附近由间隙流动引起的低压区减小,并向叶片尾缘移动。但由于喷气量增大使得动叶输出功率下降,使得涡轮效率降低。  相似文献   

16.
为研究间隙变化对轴流压气机转子近失速工况下叶顶流场结构的影响,以轴流压气机转子Rotor37为研究对象,对其叶顶流场进行定常和非定常的数值模拟。计算结果表明:随着叶顶间隙的减小,压气机的总压比和等熵效率均有所提高,稳定运行范围扩大;2倍设计间隙下,叶尖泄漏涡经激波作用后发生膨胀破碎,堵塞来流通道,诱发压气机堵塞失速;0.5倍设计间隙下,吸力面流动分离加剧,发生回流,部分回流与来流在压力面前缘上游发生干涉,进口堵塞加剧,致使部分来流从前缘溢出,导致压气机叶尖失速;不同间隙下压气机失速过程的主导因素不同,大间隙下失速由叶尖泄漏涡破碎的非定常波动引起,小间隙下失速主要由流动分离引发的周期性前缘溢流所主导。  相似文献   

17.
To investigate the influence of impeller type on the performance and inner flow of centrifugal pump, the numeri- cal simulation and experimental research were carried out on the same centrifugal pump with straight-blade and curved-blade open impeller. Based on SIMPLEC algorithm, time-averaged N-S equation and the standard k-e turbulence model, the numerical results are obtained. The pressure distribution in the different type impellers is uniform, while the low pressure area in straight-blade inlet is larger. The vortexes in the passage of impeller exist in both cases. Relative to curved-blade impeller, there are larger vortexes in most of the flow passages except the passage near the tongue in straight-blade impeller. Also some small backflow regions are found at the blade inlet of two impellers. The characteristic curves achieved by numerical simulation basieaUy agree with those by experiment, and straight-blade open impeller centrifugal pump has a better hydraulic performance.  相似文献   

18.
The claw-type hydrogen pump has been applied in fuel cell vehicles (FCVs) because of its compact structure, high reliability, and oil-free quality. In this study, a three-dimensional transient computational fluid dynamics (CFD) modelling of a claw-type hydrogen pump used in FCVs was established. Hexahedral structured grids were generated and updated at an increment of 3° in rotating angle to ensure the mesh quality of the whole solving process. The leakage of radial clearance (RC) and axial clearance (AC) was considered. The presented modelling and simulation methods were validated by operating a claw pump at different pressure ratios. The pressure and velocity vector fields in both AC and middle plane, along with the mechanism of the fluid field distribution were analyzed in detail. The in-depth relationship amongst the fluctuation of discharge pressure, outlet mass flow rate and discharge area during the whole working process was revealed. P-θ and V-θ diagram of the whole operating cycle were analyzed. The influence of AC and RCs respectively on the volumetric efficiency of a claw pump was compared and evaluated. It is concluded that back flow in suction pipe happened near 360° as part of the discharge chamber was cut off from the exhaust port and high pressure gas from carryover flowed back into the inlet pipe. The pressure increase during the displacement process, theoretically zero, is actually significant and even comparable to the pressure increase during the compression and discharge process. In addition, volumetric efficiency is most sensitive to axial clearance, followed by radial clearance between rotor and casing, while radial clearance between the rotors has the least influence.  相似文献   

19.
Cavitation is a well‐known phenomenon that causes performance losses in all kinds of hydraulic machinery, including automotive water pumps. The present study uses a coolant flow test rig to investigate cavitation in water pumps. The coolant flow rate was measured for various coolant temperatures and compositions. This study validates that cavitation occurs during the coolant warm‐up period, in which coolant temperature is typically below 80°C. Cavitation was also related to a drop in the water pump inlet pressure and driving torque. Based on the results from this study, it can be concluded that cavitation is affected by coolant temperature, engine speed, and coolant composition. Furthermore, it is found that the use of an electric water pump is effective for minimizing the pressure drop and driving loss of the pump. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
The paper is concerned with the fluid flow in the impeller side clearances of a centrifugal pump with volute cas-ing.The flow conditions in these small axial gaps are of significant importance for a number of effects such as disk friction,leakage losses or hydraulic axial thrust to name but a few.In the investigated single stage pump,the flow pattern in the volute turns out to be asymmetric even at design flow rate.To gain a detailed insight into the flow structure,numerical simulations of the complete pump including the impeller side clearances are accom-plished.Additionally,the hydraulic head and the radial pressure distributions in the impeller side clearances are measured and compared with the numerical results.Two configurations of the impeller,either with or without balancing holes,are examined.Moreover,three different operating points,i.e.:design point,part load or overload conditions are considered.In addition,analytical calculations are accomplished to determine the pressure distri-butions in the impeller side clearances.If accurate boundary conditions are available,the 1D flow models used in this paper can provide reasonable results for the radial static pressure distribution in the impeller side clearances.Furthermore,a counter rotating wake region develops in the rear impeller side clearances in absence of balancing holes which severely affects the inflow and outflow conditions of the cavity in circumferential direction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号