首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The neuropeptide calcitonin gene-related peptide (CGRP) was localized in the hippocampus and dentate gyrus of the rat by immunocytochemistry at the light and electron microscopic levels. Without colchicine treatment only faint neuropil labelling was found in the inner molecular layer of the dentate gyrus. Following colchicine treatment, a large number of neurons with numerous complex spines along the proximal dendrites were visualized in the hilus of the dentate gyrus, particularly in the ventral areas, and, in addition, staining of the inner molecular layer became stronger. Several CA3c pyramidal cells located adjacent to the hilar region in the ventral hippocampus also appeared to be faintly positive, although in most cases only their axon initial segments were labelled. Outside this region, the subicular end of the CA1 subfield contained occasional CGRP-positive non-pyramidal cells. The hilar CGRP-positive neurons were negative for parvalbumin, calretinin, cholecystokinin and somatostatin, whereas most of them were immunoreactive for GluR2/3 (the AMPA-type glutamate receptor known to be expressed largely by principal cells). Correlated electron microscopy showed that the spines along the proximal dendritic shafts indeed correspond to thorny excrescences engulfed by large complex mossy terminals forming asymmetrical synapses. Pre-embedding immunogold staining demonstrated that CGRP immunoreactivity in the inner molecular layer was confined to axon terminals that form asymmetrical synapses, and the labelling was associated with large dense-core vesicles. The present data provide direct evidence that CGRP is present in mossy cells of the dentate gyrus and to a lesser degree in CA3c pyramidal cells of the ventral hippocampus. These CGRP-containing principal cells terminate largely in the inner molecular layer of the dentate gyrus, and may release the neuropeptide in conjunction with their 'classical' neurotransmitter, glutamate.  相似文献   

2.
Golgi and electron microscopic observations were made on the neurons in the deep layers (below the stratum opticum) of the cat superior colliculus. Large neurons, 35-60 micrometers in somal diameter, occur mainly in the lateral two-thirds of the colliculus. They have numerous somatic and dendritic spines and receive a large number of axon terminals (bouton covering ratio: more than 70%). The medium-sized neurons (20-30 micrometer), with a moderate number of dendritic spines, show a lower bouton covering ratio (25-30%). The ratio for small neurons (8-15 micrometers), with very few dendritic spines, is less than 10%. The medium-sized and small neurons are distributed throughout the colliculus and show marked variability in the dendritic arrangement. Seven different types of axon terminals were distinguished: types I, II, V, and VII form asymmetrical and types III, IV, and VI symmetrical synapses. Type I terminals represent small boutons containing predominantly spherical vesicles, and are in contact mainly with small dendritic profiles. Type II terminals are medium-sized and slender, contain a mixture of spherical and slightly oval vesicles, and make synaptic contacts with small to medium-sized dendrites and somatic spines. This type of terminal is occasionally presynaptic to vesicle-containing dendrites (type VIII). Type III terminals are small, contain flattened vesicles predominantly, and are presynaptic to a wide variety of neuronal elements in the deep layers of the superior colliculus. Type IV terminals are represented by medium to large-sized boutons that contain pleomorphic vesicles and make synaptic contacts chiefly with the large neurons. Type V and VI terminals exhibit a quite dense axoplasmic matrix and mainly contact the large neurons. Type VII terminals are often in the form of boutons en passant and contain numerous large granular vesicles. Pleomorphic vesicle-containing dendrites (type VIII terminals) are also observed to participate in the axodendrodendritic serial synapses.  相似文献   

3.
The three dimensional organization of the dendritic trees of pyramidal cells in the rat hippocampus was investigated using intracellular injection of horseradish peroxidase in the in vitro hippocampal slice preparation and computer-aided reconstruction. The total dendritic length, dendritic length in each of the hippocampal laminae, and the number of dendritic branches were measured in 20 CA1 pyramidal cells, 7 neurons in CA2 and 20 CA3 pyramidal cells. The total dendritic length of CA3 pyramidal cells varied in a consistent fashion depending on their position within the field. Cells located close to the dentate gyrus had the smallest dendritic trees which averaged 9,300 microns in total length. Cells in the distal part of CA3 (near CA2) had the largest dendritic trees, averaging 15,800 microns. The CA2 field contained cells which resembled CA3 pyramidal cells in most respects except for the absence of thorny excrescences on their proximal dendrites. There were also smaller pyramidal cells that resembled CA1 neurons. CA1 pyramidal cells tended to be more homogeneous. Pyramidal neurons throughout the transverse extent of CA1 had a total dendritic length on the order of 13,500 microns. The quantitative analysis of the laminar distribution of dendrites demonstrated that the stratum oriens and stratum radiatum contained significant portions of the pyramidal cell dendritic trees. In Ca3, for example, 42-51% of the total dendritic length was located in stratum oriens; about 34% of the dendritic tree was located in stratum radiatium. The amount of dendritic length in stratum lacunosum-moleculare of CA3 varied depending on the location of the cell. Many CA3 cells located within the limbs of the dentate gyrus, for example, had no dendrites extending into stratum lacunosum-moleculare whereas those located distally in CA3 had about the same percentage of their dendritic tree in stratum lacunosum-moleculare as in stratum radiatum. In CA1, nearly half of the dendritic length was located in stratum radiatum, 34% was in stratum oriens and 18% was in stratum lacunosum-moleculare. These studies identified distinctive dendritic branching patterns, in the stratum radiatum and stratum lacunosum-moleculare, which clearly distinguished CA3 from CA1 neurons.  相似文献   

4.
A combined study of anterograde axonal degeneration and Golgi electron microscopic technique was designed to examine the distribution and density of axon terminals from the mediodorsal thalamic nucleus (MD) over layer III pyramidal cells in the prelimbic cortex of the rat. The reconstructive analysis of serial ultrathin sections of gold-toned apical and basal dendrites of layer III pyramidal cells showed that degenerating thalamocortical axon terminals from MD formed asymmetrical synaptic contacts predominantly with dendritic spines of the identified basal dendrites as well as apical dendrites. There was little difference in the numerical density of thalamocortical synapses from MD per unit length of both apical and basal dendrites.  相似文献   

5.
In the present report, we describe a morphological and quantitative analysis of subicular synapses in layer V of the lateral entorhinal cortex (LEA) of the rat. Projections from the dorsal subiculum were labeled anterogradely, and areas in LEA showing high terminal density were randomly selected for ultrathin sectioning. More than 400 terminals in LEA were photographed in the electron microscope, and synapse types and postsynaptic targets were identified and, subsequently, quantified with the unbiased disector method. Most subicular terminals appeared to form asymmetrical synapses. A majority of asymmetrical synapses terminated on spines (67.5%), whereas a smaller fraction of asymmetrical synapses (23.5%) terminated on dendritic shafts. A small fraction of the terminals (7%) had symmetrical features. These symmetrical synapses had an almost equal percentage of spines and dendritic shafts as postsynaptic elements. Labeled synapses on somata or axons were never observed. The findings of this study in conjunction with relevant electrophysiological observations (Jones [1987] Neurosci Left 81:209-214) leads to the conclusion that the subiculo-entorhinal pathway comprises a large excitatory and a smaller inhibitory projection, both making synaptic contacts with presumed principal neurons and interneurons in the entorhinal cortex.  相似文献   

6.
Neurons contain distinct compartments including dendrites, dendritic spines, axons and synaptic terminals. The molecular mechanisms that generate and distinguish these compartments, although largely unknown, may involve the small GTPases Rac and Cdc42, which appear to regulate actin polymerization. Having shown that perturbations of Rac1 activity block the growth of axons but not dendrites of Drosophila neurons, we investigated whether this also applies to mammals by examining transgenic mice expressing constitutively active human Rac1 in Purkinje cells. We found that these mice were ataxic and had a reduction of Purkinje-cell axon terminals in the deep cerebellar nuclei, whereas the dendritic trees grew to normal height and branched extensively. Unexpectedly, the dendritic spines of Purkinje cells in developing and mature cerebella were much reduced in size but increased in number. These 'mini' spines often form supernumerary synapses. These differential effects of perturbing Rac1 activity indicate that there may be distinct mechanisms for the elaboration of axons, dendrites and dendritic spines.  相似文献   

7.
To assess the position of interneurons in the hippocampal network, fast spiking cells were recorded intracellularly in vitro and filled with biocytin. Sixteen non-principal cells were selected on the basis of 1) cell bodies located in the pyramidal layer and in the middle of the slice, 2) extensive labeling of their axons, and 3) a branching pattern of the axon indicating that they were not axo-axonic cells. Examination of their efferent synapses (n = 400) demonstrated that the cells made synapses on cell bodies, dendritic shafts, spines, and axon initial segments (AIS). Statistical analysis of the distribution of different postsynaptic elements, together with published data (n = 288) for 12 similar cells, showed that the interneurons were heterogeneous with regard to the frequency of synapses given to different parts of pyramidal cells. When the cells were grouped according to whether they had less or more than 40% somatic synaptic targets, each population appeared homogeneous. The population (n = 19) innervating a high proportion of somata (53 +/- 10%, SD) corresponds to basket cells. They also form synapses with proximal dendrites (44 +/- 12%) and rarely with AISs and spines. One well-filled basket cell had 8,859 boutons within the slice, covering an area of 0.331 mm2 of pyramidal layer tangentially and containing 7,150 pyramidal cells, 933 (13%) of which were calculated to be innervated, assuming that each pyramidal cell received nine to ten synapses. It was extrapolated that the intact axon probably had about 10,800 boutons innervating 1,140 pyramids. The proportion of innervated pyramidal cells decreased from 28% in the middle to 4% at the edge of the axonal field. The other group of neurons, the bistratified cells (n = 9), showed a preference for dendritic shafts (79 +/- 8%) and spines (17 +/- 8%) as synaptic targets, rarely terminating on somata (4 +/- 8%). Their axonal field was significantly larger (1,250 +/- 180 microns) in the medio-lateral direction than that of basket cells (760 +/- 130 microns). The axon terminals of bistratified cells were smaller than those of basket cells. Furthermore, in constrast to bistratified cells, basket cells had a significant proportion of dendrites in stratum lacunosum-moleculare suggesting a direct entorhinal input. The results define two distinct types of GABAergic neuron innervating pyramidal cells in a spatially segregated manner and predict different functions for the two inputs. The perisomatic termination of basket cells is suited for the synchronization of a subset of pyramidal cells that they select from the population within their axonal field, whereas the termination of bistratified cells in conjunction with Schaffer collateral/commissural terminals may govern the timing of CA3 input and/or voltage-dependent conductances in the dendrites.  相似文献   

8.
Interneurons in the dentate area were characterized physiologically and filled with biocytin in urethane-anaesthetized rats. On the basis of axonal targets the following groups could be distinguished. (i) Large multipolar interneurons with spiny dendrites in the deep hilar region densely innervated the outer molecular layer and contacted both granule cells and parvalbumin-positive neurons (hilar interneuron with perforant pathway-associated axon terminals; HIPP cells). (ii) A pyramidal-shaped neuron with a cell body located in the subgranular layer innervated mostly the inner molecular layer and the granule cell layer (hilar interneuron with commissural-associational pathway-associated axon terminals; HICAP cell). It contacted both granule cells and interneurons. Axon collaterals of HIPP and HICAP neurons covered virtually the entire septo-temporal extent of the dorsal dentate gyrus. (iii) Calbindin-immunoreactive neurons with horizontal dendrites in stratum oriens of the CA3c region gave rise to a rich axon arbor in strata oriens, pyramidale and radiatum and innervated almost the entire extent of the dorsal hippocampus, with some collaterals entering the subicular area (putative trilaminar cell). (iv) Hilar basket cells innervated mostly the granule cell layer and to some extent the inner molecular layer and the CA3c pyramidal layer. HIPP and trilaminar interneurons could be antidromically activated by stimulation of the fimbria. Only the HICAP cells could be monosynaptically discharged by the perforant path input. All interneurons examined showed phase-locked activity to the extracellularly recorded theta/gamma oscillations or to irregular dentate electroencephalogram spikes. These observations indicate that the interconnected interneuronal system plays a critical role in coordinating population of the dentate gyrus and Ammon's hom.  相似文献   

9.
Vasoactive intestinal polypeptide-immunoreactive interneurons have been classified according to their axonal and dendritic patterns and neurochemical features in the hippocampus of the rat. A correlation of these characteristics unravelled three distinct types of vasoactive intestinal polypeptide-containing cells. Interneurons forming a dense axonal plexus at the border of stratum oriens and alveus always contain the calcium binding protein, calretinin, but lack the neuropeptide cholecystokinin. The axon of another type of vasoactive intestinal polypeptide-positive interneuron surrounds pyramidal cell bodies in a basket-like manner, and co-localizes cholecystokinin but not calretinin. Vasoactive intestinal polypeptide-containing cells projecting to stratum radiatum form two subsets distinguished by dendritic morphology. Those with dendrites restricted to stratum lacunosum-molecular lack both calretinin and cholecystokinin, whereas the other subtype with dendrites spanning all layers contains calretinin in 40% of the cases and occasionally also cholecystokin. GABA was shown to be present, and the calcium binding proteins calbindin D-28k and parvalbumin absent from all three types of vasoactive intestinal polypeptide-positive interneurons. The specific dendritic and axonal arbours imply different input and output properties for the three interneuron types. The correlation of these features with the content of neurochemical markers strongly suggests that they are specialized for distinct inhibitory functions in the hippocampal network.  相似文献   

10.
Long-term potentiation (LTP) is a long-lasting form of synaptic plasticity induced by brief repetitive afferent stimulation that is thought to be associated with learning and memory. It is most commonly studied in the hippocampus where it may last for several weeks, and involves the synthesis of new proteins that might play a structural role. In this review we summarize the evidence in favor of modifications of neuronal architecture during LTP. We focus our attention on changes occurring at the level of single synapses, including components of postsynaptic dendrites (dendritic spines, the postsynaptic density, and synaptic curvature), of presynaptic terminals, and the formation of new synapses. We conclude that although many morphological changes at various sites have been observed during LTP, there is no definitive proof in favor of structural changes associated with LTP. However, morphological modifications remain a valid candidate for mechanisms of learning and memory.  相似文献   

11.
The arborization pattern and postsynaptic targets of corticofugal axons in basal forebrain areas have been studied by the combination of anatomical tract-tracing and pre- and postembedding immunocytochemistry. The anterograde neuronal tracer Phaseolus vulgaris leucoagglutinin was iontophoretically delivered into different neocortical (frontal, parietal, occipital), allocortical (piriform) and mesocortical (insular, prefrontal) areas in rats. To identify the transmitter phenotype in pre- or postsynaptic elements, the tracer staining was combined with immunolabeling for either glutamate or GABA, or with immunolabeling for choline acetyltransferase or parvalbumin. Tracer injections into medial and ventral prefrontal areas gave rise to dense terminal arborizations in extended basal forebrain areas, particularly in the horizontal limb of the diagonal band and the region ventral to it. Terminals were also found to a lesser extent in the ventral part of the substantia innominata and in ventral pallidal areas adjoining ventral striatal territories. Similarly, labeled fibers from the piriform and insular cortices were found to reach lateral and ventral parts of the substantia innominata, where terminal varicosities were evident. In contrast, descending fibers from neocortical areas were smooth, devoid of terminal varicosities, and restricted to the myelinated fascicles of the internal capsule en route to more caudal targets. Ultrastructural studies obtained indicated that corticofugal axon terminals in the basal forebrain areas form synaptic contact primarily with dendritic spines or small dendritic branches (89%); the remaining axon terminals established synapses with dendritic shafts. All tracer labeled axon terminals were immunonegative for GABA, and in the cases investigated, were found to contain glutamate immunoreactivity. In material stained for the anterograde tracer and choline acetyltransferase, a total of 63 Phaseolus vulgaris leucoagglutinin varicosities closely associated with cholinergic profiles were selected for electron microscopic analysis. From this material, 37 varicosities were identified as establishing asymmetric synaptic contacts with neurons that were immunonegative for choline acetyltransferase, including spines and small dendrites (87%) or dendritic shafts (13%). Unequivocal evidence for synaptic interactions between tracer labeled terminals and cholinergic profiles could not be obtained in the remaining cases. From material stained for the anterograde tracer and parvalbumin, 40% of the labeled terminals investigated were found to establish synapses with parvalbumin-positive elements; these contacts were on dendritic shafts and were of the asymmetrical type. The present data suggest that corticofugal axons innervate forebrain neurons that are primarily inhibitory and non-cholinergic; local forebrain axonal arborizations of these cells may represent a mechanism by which prefrontal cortical areas control basal forebrain cholinergic neurons outside the traditional boundaries of pallidal areas.  相似文献   

12.
The shell compartment of the nucleus accumbens (AcbSh) is prominently involved in the rewarding aspects of delta-opioid receptor (DOR) agonists, including one of its putative endogenous ligands, Met5-enkephalin (Enk). We examined the ultrastructural immunocytochemical localization of an antipeptide DOR antiserum and an antibody against Enk to determine the major cellular sites for DOR activation and the spatial relationship between DOR and Enk in this region. Sixty percent of DOR-immunoreactive profiles were axon terminals and small unmyelinated axons, whereas the remainder were mainly dendrites and dendritic spines. In axons and terminals, DOR labeling was distributed along plasma and vesicular membranes. DOR-containing terminals were mainly large and primarily formed symmetric synapses or occasionally asymmetric synapses. DOR immunoreactivity also was associated with terminals that were small and formed punctate symmetric or nonrecognizable synapses. Dual immunoperoxidase and immunogold labeling showed that 35% of DOR-labeled axons apposed other terminals that contained Enk. In addition, 25% of the DOR-labeled terminals contained Enk. Thirty-five percent of DOR labeling was observed within dendrites and dendritic spines. DOR-labeled spines showed intense immunoreactivity within asymmetric postsynaptic junctions, which were formed by terminals that lacked Enk immunoreactivity. DOR-labeled spines, however, were apposed to Enk-containing terminals in 13% of all associations between dually labeled profiles. These results provide ultrastructural evidence that activation of DOR in the AcbSh is primarily involved in modulating the presynaptic release of mainly inhibitory, but also excitatory, neurotransmitters. These data also suggest that DOR plays a role in determining the postsynaptic response to excitatory afferents.  相似文献   

13.
GABAergic interneurons sculpt the activity of principal cells and are themselves governed by GABAergic inputs. To determine directly some of the sources and mechanisms of this GABAergic innervation, we have used dual intracellular recordings with biocytin-filled microelectrodes and investigated synaptic interactions between pairs of interneurons in area CA1 of the adult rat hippocampus. Of four synaptically-coupled interneuron-to-interneuron cell pairs, three presynaptic cells were identified as basket cells, preferentially innervating somata and proximal dendrites of pyramidal cells, but one differing from the other two in the laminar distribution of its dendritic and axonal fields. The fourth presynaptic interneuron was located at the border between strata lacunosum moleculare and radiatum, with axon ramifying within stratum radiatum. Action potentials evoked in all four presynaptic interneurons were found to elicit fast hyperpolarizing inhibitory postsynaptic potentials (mean amplitude 0.35 +/- 0.10 mV at a membrane potential of -59 +/- 2.8 mV) in other simultaneously recorded interneurons (n=4). In addition, three of the presynaptic interneurons were also shown to produce similar postsynaptic responses in subsequently recorded pyramidal cells (n=4). Electron microscopic evaluation revealed one of the presynaptic basket cells to form 12 synaptic junctions with the perisomatic domain (seven somatic synapses and five synapses onto proximal dendritic shafts) of the postsynaptic interneuron in addition to innervating the same compartments of randomly-selected local pyramidal cells (50% somatic and 50% proximal dendritic synapses, n=12). In addition, light microscopic analysis also indicated autaptic self-innervation in basket (12 of 12) and bistratified cells (six of six). Electron microscopic investigation of one basket cell confirmed six autaptic junctions made by five of its boutons. Together, these data demonstrate that several distinct types of interneuron have divergent output to both principal cells and local interneurons of the same (basket cells) or different type. The fast synaptic effects, probably mediated by GABA in both postsynaptic interneurons and principal cells are similar. These additional sources of GABA identified here in the input to GABAergic cells could contribute to the differential temporal patterning of distinct GABAergic synaptic networks.  相似文献   

14.
Hippocampal synapses express two distinct forms of the long-term potentiation (LTP), i.e. NMDA receptor-dependent and -independent LTPs. To understand its molecular-anatomical basis, we produced affinity-purified antibodies against the GluRepsilon1 (NR2A), GluRepsilon2 (NR2B), and GluRzeta1 (NR1) subunits of the N-methyl-D-aspartate (NMDA) receptor channel, and determined their distributions in the mouse hippocampus. Using NMDA receptor subunit-deficient mice as the specificity controls, section pretreatment with proteases (pepsin and proteinase K) was found to be very effective to detect authentic NMDA receptor subunits. As the result of modified immunohistochemistry, all three subunits were detected at the highest level in the strata oriens and radiatum of the CA1 subfield, and high levels were also seen in most other neuropil layers of the CA1 and CA3 subfields and of the dentate gyrus. However, the stratum lucidum, a mossy fibre-recipient layer of the CA3 subfield, contained low levels of the GluRepsilon1 and GluRzeta1 subunits and almost excluded the GluRepsilon2 subunit. Double immunofluorescence with the AMPA receptor GluRalpha1 (GluR1 or GluR-A) subunit further demonstrated that the GluRepsilon1 subunit was colocalized in a subset, not all, of GluRalpha1-immunopositive structures in the stratum lucidum. Therefore, the selective scarcity of these NMDA receptor subunits in the stratum lucidum suggests that a different synaptic targeting mechanism exerts within a single CA3 pyramidal neurone in vivo, which would explain contrasting significance of the NMDA receptor channel in LTP induction mechanisms between the mossy fibre-CA3 synapse and other hippocampal synapses.  相似文献   

15.
Many motor effects of opiates acting at mu-opioid receptors are thought to reflect functional interactions with dopaminergic inputs to the caudate-putamen nucleus. We examined the cellular and subcellular bases for this interaction in the rat caudate-putamen nucleus by dual immunocytochemical labelling for mu-opioid receptors and tyrosine hydroxylase, a marker mainly for dopamine in this region. mu-Opioid receptor-like immunoreactivity showed a patchy distribution by light microscopy. Within the patches, electron microscopy revealed that immunogold labelling for mu-opioid receptors was mainly distributed along extrasynaptic plasma membranes of medium spiny neurons. In contrast, immunoperoxidase labelling for tyrosine hydroxylase was exclusively located in axons and axon terminals without detectable mu-opioid receptor-like immunoreactivity. Forty-six percent of the total mu-opioid receptor-labelled neuronal profiles (n = 1441) were in contact with tyrosine hydroxylase-immunoreactive axons and terminals. These contacts were characterized by closely apposed parallel plasma membrane segments, without well-defined synaptic junctions, or with punctate symmetric specializations. From 639 noted appositions, over 90% were between mu-opioid receptor-labelled dendrites and/or dendritic spines and tyrosine hydroxylase-containing terminals. The dendritic spines containing mu-opioid receptor-like immunoreactivity often received asymmetric synapses characteristics of excitatory inputs from unlabelled terminals. Axon terminals containing mu-opioid receptor-like immunoreactivity formed asymmetric synapses with dendritic spines, or apposed tyrosine hydroxylase-labelled terminals. Our results suggest that, in striatal patch compartments, mu-agonists and dopamine dually modulate the activity of single spiny neurons mainly through changes in their postsynaptic responses to excitatory inputs. In addition, our findings implicate mu-opioid receptors and dopamine in the presynaptic regulation of excitatory neurotransmitter release within the striatal patch compartments.  相似文献   

16.
To elucidate the role of aspartate as a signal molecule in the brain, its localization and those of related amino acids were examined by light and electron microscopic quantitative immunocytochemistry using antibodies specifically recognizing the aldehyde-fixed amino acids. Rat hippocampal slices were incubated at physiological and depolarizing [K+] before glutaraldehyde fixation. At normal [K+], aspartate-like and glutamate-like immunoreactivities were colocalized in nerve terminals forming asymmetrical synapses on spines in stratum radiatum of CA1 and the inner molecular layer of fascia dentata (i.e., excitatory afferents from CA3 and hilus, respectively). During K+ depolarization there was a loss of aspartate and glutamate from these terminals. Simultaneously the immunoreactivities strongly increased in glial cells. These changes were Ca2+-dependent and tetanus toxin-sensitive and did not comprise taurine-like immunoreactivity. Adding glutamine at CSF concentration prevented the loss of aspartate and glutamate and revealed an enhancement of aspartate in the terminals at moderate depolarization. In hippocampi from animals perfused with glutaraldehyde during insulin-induced hypoglycemia (to combine a strong aspartate signal with good ultrastructure) aspartate was colocalized with glutamate in excitatory terminals in stratum radiatum of CA1. The synaptic vesicle-to-cytoplasmic matrix ratios of immunogold particle density were similar for aspartate and glutamate, significantly higher than those observed for glutamine or taurine. Similar results were obtained in normoglycemic animals, although the nerve terminal contents of aspartate were lower. The results indicate that aspartate can be concentrated in synaptic vesicles and subject to sustained exocytotic release from the same nerve endings that contain and release glutamate.  相似文献   

17.
The ultrastructure and synaptic relations of neurotensinergic neurons in the rat dorsal raphe nucleus (DRN) were examined. The neurotensin-like immunoreactive (NT-L1) neurons in the DRN were fusiform or spherical. The NT-LI perikarya could only be detected in colchicine-treated animals whereas the immunoreactive axon terminals could only be found in the animals not treated with colchicine. Although many NT-LI dendrites received synapses from nonimmunoreactive axon terminals, the NT-LI perikarya received few synapses. NT-LI axon terminals also made synapses on nonimmunoreactive dendrites. Occasionally, synapses were found between the NT-LI axon terminals and NT-LI dendrites in the cases in which the animals were not treated with colchicine.  相似文献   

18.
The distribution of acetylcholinesterase(AChE) in the hippocampal formation of the dreher mutant mouse was studied by comparing homozygous mutant (drsst-J/drsst-J) with littermate control (+/? or +/+). In the control mice, AChE activity was most intense in the inner one-third of the stratum oriens and lacnosum of the hippocampus, and in the inner one-fifth of the molecular layer of the dentate gyrus. In contrast, in homozygous dreher mice, AChE activity in area CA3c of the hippocampus was not restricted to the stratum oriens, and extended upward into the infrapyramidal and suprapyramidal mossy fiber layers, the lower part of the stratum radiatum, the pyramidal cell layer, and downward toward the alveus. In addition, the distribution of AChE activity was modified by accompanying with ectopic pyramidal cells or with disruption of the pyramidal cell layer. AChE activity in the dentate gyrus of the dreher mouse was not confined to the inner one-fifth of the molecular layer. These findings indicated that the cholinergic input to the hippocampal formation is not normal in the dreher mutant mouse. Since the areas of AChE activity correspond to the presence of ectopic pyramidal cells in the dreher mouse, incoming cholinergic fibers may form synapses with these ectopic cells and with the dendrites of normal pyramidal cells that extend into the expanded area of AChE activity.  相似文献   

19.
Pre-embedding immunoperoxidase staining for CAM II kinase-alpha and post-embedding immunogold staining for glutamate and GABA, were used to reveal the subcellular distribution of CAM II kinase-alpha at transmitter-characterized synapses in the CA1 region of rat hippocampus. Immunoelectron microscopy showed that the majority of CAM II kinase-alpha-immunostained neuronal profiles were dendritic spines presumably derived from pyramidal cells. CAM II kinase-alpha immunoreactivity was mainly localized in postsynatic densities associated with glutamatergic axon terminals. No CAM II kinase-alpha immunoreactivity was detected in GABA-immunoreactive profiles or at GABAergic synapses. This study provides morphological evidence that CAM II kinase-alpha is involved only in excitatory neuronal transmission in the CA1 region. The enzyme is unlikely to be involved in plasticity at GABA synapses.  相似文献   

20.
The requirement of postsynaptic calcium influx via L-type channels for the induction of long-term potentiation (LTP) of mossy fiber input to CA3 pyramidal neurons was tested for two different patterns of stimulation. Two types of LTP-inducing stimuli were used based on the suggestion that one of them, brief high-frequency stimulation (B-HFS), induces LTP postsynaptically, whereas the other pattern, long high-frequency stimulation (L-HFS), induces mossy fiber LTP presynaptically. To test whether or not calcium influx into CA3 pyramidal neurons is necessary for LTP induced by either pattern of stimulation, nimodipine, a L-type calcium channel antagonist, was added during stimulation. In these experiments nimodipine blocked the induction of mossy fiber LTP when B-HFS was given [34 +/- 5% (mean +/- SE) increase in control versus 7 +/- 4% in nimodipine, P < 0.003]; in contrast, nimodipine did not block the induction of LTP with L-HFS (107 +/- 10% in control vs. 80 +/- 9% in nimodipine, P > 0.05). Administration of nimodipine after the induction of LTP had no effect on the expression of LTP. In addition, B- and L-HFS delivered directly to commissural/associational fibers in stratum radiatum failed to induce a N-methyl--aspartate-independent form of LTP, obviating the possibility that the presumed mossy fiber LTP resulted from potentiation of other synapses. Nimodipine had no effect on calcium transients recorded from mossy fiber presynaptic terminals evoked with the B-HFS paradigm but reduced postsynaptic calcium transients. Our results support the hypothesis that induction of mossy fiber LTP by B-HFS is mediated postsynaptically and requires entry of calcium through L-type channels into CA3 neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号