首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The autogenous and drying shrinkage of Portland cement concrete, and binary and ternary binder concretes, were measured and compared. The binary and ternary binder concretes were formed by replacing part of the cement with fly ash, very fine fly ash and/or silica fume. Restrained shrinkage test was also performed to evaluate the effect of binder type on early age cracking. After the cracking of the restrained ring samples, crack widths were measured and compared with the results of an R-curve based model, which takes post-peak elastic and creep strains into account.The incorporation of fly ash and very fine fly ash decreased the autogenous shrinkage strain but increased the drying shrinkage strain. Since the total shrinkage strains of both the ternary and the binary concrete mixtures were similar, the strength development became an important factor in the cracking. The lower strength of the concrete with ternary binders led to earlier cracking compared to the binary binder concrete. Portland cement concrete cracked the earliest and had the greatest crack width. Measured crack widths were in accordance with the crack widths calculated with the R-curve model.  相似文献   

2.
This paper is intended to provide guidance on the form and extent to which supplementary cementing materials, in combination with Portland cement, modifies the rate of heat evolution during the early stages of hydration in concrete. In this investigation, concretes were prepared with fly ash, condensed silica fume and ground granulated blastfurnace slag, blended with Portland cement in proportions ranging from 5% to 80%. These concretes were subjected to heat of hydration tests under adiabatic conditions and the results were used to assess and quantify the effects of the supplementary cementing materials in altering the heat rate profiles of concrete. The paper also proposes a simplified mathematical form of the heat rate curve for blended cement binders in concrete to allow a design stage assessment of the likely early-age time–temperature profiles in large concrete structures. Such an assessment would be essential in the case of concrete structures where the potential for thermally induced cracking is of concern.  相似文献   

3.
Granulated slag from metal industries and fly ash from the combustion of coal are among the industrial by-products and have been widely used as mineral admixtures in normal and high strength concrete. Due to the reaction between calcium hydroxide and fly ash or slag, compared with Portland cement, the hydration of concrete containing fly ash or slag is much more complex. In this paper, by considering the producing of calcium hydroxide in cement hydration and the consumption of it in the reaction of mineral admixtures, a numerical model is proposed to simulate the hydration of concrete containing fly ash or slag. The heat evolution rate of fly ash or slag blended concrete is determined from the contribution of both cement hydration and the reaction of mineral admixtures. Furthermore, a temperature rise in blended concrete is evaluated based on the degree of hydration of cement and mineral admixtures. The proposed model is verified with experimental data on the concrete with different water-to-cement ratios and mineral admixtures substitution ratios.  相似文献   

4.
Shrinkage cracking in concrete is a widespread problem, especially in concrete structures with high surface-to-volume ratio such as bridge decks. Expansive cements based on calcium sulfoaluminate phase were developed to mitigate the shrinkage cracking of concrete. The compressive stress induced due to restrained expansion of concrete has been shown to counteract the tensile stress generated during drying shrinkage. This research attempts to address the differential behavior of fly ash type (i.e., Class C vs. Class F) on early-age expansion and hydration characteristics of ordinary Portland cement (OPC)–calcium sulfoaluminate (CSA) cement blend. It was observed earlier that the presence of Class C fly ash (CFA), unlike Class F fly ash, shortened the expansion duration of OPC–CSA cement blend, which was hypothesized to be correlated to early depletion of gypsum. This paper presents a detailed verification of the hypothesis. Addition of external gypsum to OPC–CSA–CFA blend led to simultaneous increase in expansion and disappearance of a shoulder peak in the calorimetric curve. Thermodynamic calculations using a geochemical modeling program (GEMS-PSI) revealed higher saturation levels of ettringite in presence of external gypsum, which led to higher crystallization stress, and thereby increased expansion.  相似文献   

5.
In this study the influence of crack width, cover depth and concrete quality on corrosion of steel in high performance concrete was investigated. Three mixtures, one control and two more containing corrosion inhibiting admixtures, Calcium Nitrite and Disodium Tetrapropenyl Succinate, in combination with 20% fly ash replacement with respect to the cement weight were prepared. Specimens were concrete cylinders measuring 100 mm in diameter and 65 and 105 mm in length, with a 16-mm steel bar centrally placed at two concrete covers of 25 and 45 mm. Before being exposed to a simulated marine environment, the specimens were pre-cracked under a controlled splitting test with crack widths ranging from 90 to 330 μm formed perpendicularly to the reinforcing bars. During a 16-month exposure, the corrosion risk of the reinforcing bars was evaluated by half-cell corrosion potentials and the corrosion rate by linear polarization method. Also, the total integrated corrosion current was estimated. Results show that, albeit to different degrees, cracking was found to be an influencing factor in promoting corrosion of the steel in concrete with either 25 mm or 45 mm concrete cover; nevertheless, the effectiveness of the concrete cover depended greatly on the crack thickness. Results also revealed that corrosion inhibitors and fly ash were effective in delaying corrosion even in cracked concrete.  相似文献   

6.
针对传统的普通道面混凝土施工后经常出现裂缝的现象,分析了裂缝产生的原因,提出在普通道面混凝土中掺加粉煤灰、聚丙烯纤维的新型道面混凝土,采用平板法进行了抗裂性能对比试验。结果表明:在普通道面混凝土中单掺粉煤灰或聚丙烯纤维,都能提高混凝土的抗裂性,而粉煤灰和聚丙烯纤维双掺的新型道面混凝土更能有效防止裂缝的发生,显著延长道面使用寿命。  相似文献   

7.
8.
When dealing with concrete resistance to high temperatures it is important for design purposes to know the elastic parameters, such as the temperature–strain curves and the modulus of elasticity.Concretes containing a high volume of fly ash differ from conventional mixes in the cementitious phase. This results in a different behaviour under heating compared to plain Portland cement concretes. To find the elastic response of fly ash concrete four series of concrete mixtures were manufactured: one with cement only, another with 30% by mass partial replacement of cement by fly ash, and two with 30% and 40% by mass replacement of cement by ground fly ash. Tests were carried out on cylinders (150 × 300 mm). A high-calcium fly ash was used.The conditions were selected so that the applied level of stress corresponded to 25% or to 40% of the ultimate compressive strength of concrete, and a transient type of temperature regime was followed. Based on the experiments the critical temperature, the residual deformation and the modulus of elasticity were determined.The results indicate that concretes containing a high volume of fly ash are more sensitive to high temperatures, since they developed greater deformations. The fineness of the fly ash used also seems to influence the degree of deformation in an adverse way.  相似文献   

9.
10.
Thaumasite formation in concrete and mortars containing fly ash   总被引:7,自引:0,他引:7  
Due to recent reports on deterioration of concrete structures, the thaumasite form of sulfate attack has become a subject of study and close investigation. This paper investigates the formation of thaumasite in concrete and mortars containing fly ash. The results show that thaumasite formation can occur within 84 days of exposure to sulfate solutions. High volumes of fly ash can limit or promote thaumasite formation depending on the type of cement used. Thaumasite and ettringite were found among the deterioration products. However, the thaumasite formation in the specimen prepared from sulfate resisting Portland cement was not accompanied by deterioration, except by 50% fly ash addition. The mixtures of Portland limestone cement with 40% fly ash exhibited a very limited thaumasite formation while the mixtures with 50% had no thaumasite at all. It is concluded that thaumasite can also be formed in mixtures incorporating fly ash.  相似文献   

11.
In recent years, there has been a rapid increase in the use of mineral admixtures for high performance and durable concrete. Plastic shrinkage cracking in such concretes is a serious concern in large surface area/volume applications. The present study has two objectives: firstly, to investigate the influence of incorporating fly ash and granulated blast furnace slag (GGBS) on the susceptibility to such cracking; and secondly, to assess the techniques, such as fibre and shrinkage reducing admixture (SRA) addition, and spraying of curing compounds, to mitigate the cracking. The results indicate that replacement of ordinary Portland cement (OPC) with fly ash and GGBS increases the possibility of plastic shrinkage cracking significantly, with higher severity as the replacement level increases; 30% replacement of OPC with fly ash and GGBS doubled and quadrupled the crack area, respectively, mainly due to higher binder finesses, and the delay of setting and strength gain. Among the fibres tested, polypropylene and polyester fibres, at the recommended dosages of about 0.9 kg/m3, completely eliminated cracking in the most affected concrete (i.e., with 30% GGBS) while the dosages of the polyacrylonitrile and glass fibres had to be increased to provide a higher volume fraction. Two glycol-based SRAs, and two curing compounds based on acrylic resin and methacrylate mitigated cracking by significantly reducing evaporation from the surface of concrete.  相似文献   

12.
The influences of colloidal nanoSiO2 (CNS) addition on fly ash hydration and microstructure development of cement–fly ash pastes were investigated. The results revealed that fly ash hydration is accelerated by CNS at early age thus enhancing the early age strength of the materials. However, the pozzolanic reaction of fly ash at later age is significantly hindered due to the reduced CH content resulting from CNS hydration and the hindered cement hydration, as well as due to a layer of dense, low Ca/Si hydrate coating around fly ash particles. The results and discussions explain why the cementitious materials containing nanoSiO2 had a lower strength gain at later ages. Methods of mitigating the adverse effect of nanoSiO2 on cement/FA hydration at later ages were proposed.  相似文献   

13.
The influences of colloidal nanoSiO2 (CNS) addition on fly ash hydration and microstructure development of cement–fly ash pastes were investigated. The results revealed that fly ash hydration is accelerated by CNS at early age thus enhancing the early age strength of the materials. However, the pozzolanic reaction of fly ash at later age is significantly hindered due to the reduced CH content resulting from CNS hydration and the hindered cement hydration, as well as due to a layer of dense, low Ca/Si hydrate coating around fly ash particles. The results and discussions explain why the cementitious materials containing nanoSiO2 had a lower strength gain at later ages. Methods of mitigating the adverse effect of nanoSiO2 on cement/FA hydration at later ages were proposed.  相似文献   

14.
This work consists in studying the effect of the water saturation of aggregates on the development of shrinkage and the potential cracking risk of early age ordinary concrete. Different concretes were obtained from a given concrete mixture by changing only the initial degree of saturation of limestone aggregates. Three degrees of saturation were studied, namely: 0% (dry aggregates), 50% (partially saturated aggregates) and 100% (saturated aggregates). From the experimental results, the early age behaviour and the mechanical properties of the concrete strongly depend on the water saturation of aggregates. A relative cracking risk was estimated from a stress-based approach and experimentally assessed parameters. The potential risk of cracking of these different concretes was shown to be different. Even if the total water content is kept constant, the water remaining in the cement paste actually depends on the initial water saturation of aggregates. The early age behaviour of concrete and the development of its early age properties depend on the amount of added water during the mixing.  相似文献   

15.
The use of fly ash as a mineral admixture in the manufacture of concrete has received considerable attention in recent years. For this reason, several experimental studies are carried out by using fly ash at different proportions replacement of cement in concrete. In the present study, the models are developed in genetic programming for predicting the compressive strength values of cube (100 and 150 mm) and cylinder (100 × 200 and 150 × 300 mm) concrete containing fly ash at different proportions. The experimental data of different mixtures are obtained by searching 36 different literatures to predict these models. In the set of the models, the age of specimen, cement, water, sand, aggregate, superplasticizers, fly ash and CaO are entered as input parameters, while the compressive strength values of concrete containing fly ash are used as output parameter. The training, testing and validation set results of the explicit formulations obtained by the genetic programming models show that artificial intelligent methods have strong potential and can be applied for the prediction of the compressive strength of concrete containing fly ash with different specimen size and shape.  相似文献   

16.
Elevated curing temperature at early ages usually has a negative effect on the late-age strength of concrete. This article aims to study the mechanism of this phenomenon. The results show that elevated curing temperature at early ages has a negative effect on the late-age strength of hardened cement paste, but it has a greater negative effect on the late-age strength of cement mortar. After elevated temperature curing at early ages, the late hydration of cement is hindered, but the late reaction of fly ash is not influenced. Owing to the continuous reaction of fly ash, the late-age pore structure of cement–fly ash paste under elevated curing temperature is finer than that under standard curing temperature, and the late-age strength of cement–fly ash paste under elevated curing temperature is higher. However, the late-age strength of cement–fly ash mortar under elevated curing temperature is lower. Apparently, there are differences between the effects of elevated curing temperature on hardened paste and mortar. It is the deterioration of transition zone between hardened paste and aggregate that makes the negative effect of elevated curing temperature on the mortar (or concrete) be greater than the hardened paste. As the water-to-binder ratio decreases, the negative effect of elevated curing temperature on the transition zone tends to be less.  相似文献   

17.
The premature deterioration of concrete structures in aggressive environments has necessitated the development of high performance concrete (HPC). The major difference between conventional concrete and HPC is essentially the use of chemical and mineral admixtures. The improved pore structure of HPC achieved by the use of chemical and mineral admixtures causes densification of paste-aggregate transition zone, which in turn affects the fracture characteristics. Hence, studies were taken up to investigate the effect of fly ash and slag on the fracture characteristics of HPC. Beam specimens (geometrically similar and single size variable notch) with locally available fly ash (25%) and slag (50%) as cement replacement materials were prepared and tested in a servo-controlled Universal Testing Machine (UTM) under displacement control. From the value of the peak load for each beam, various fracture parameters were calculated. The results show that there is a reduction in the fracture energy due to addition of fly ash or slag, which can be attributed to the presence of unhydrated particles of size larger than that of normal flaws in concrete. Also due to densification, the post peak behaviour is steeper for the fly ash or slag based HPC mixes. The results of the investigation are presented in this paper.  相似文献   

18.
The weak transition zone between aggregate and cement paste controls many important properties of concrete. A number of studies dealing with interfacial zone are available in the literature for normal concrete and concrete containing silica fume. High-volume fly ash concrete for structural applications was developed at CANMET in the 1980s, but to date there has been no information available for interfacial zone in high-volume fly ash concrete.In this paper, the orientation index and mean size of Ca(OH)2 crystals in the aggregate-paste interfacial zone were determined by the X-ray diffractometer. The bond strength between the aggregate and paste was also investigated. It was found that, at the age of 28 days, there was no obvious transition zone between the aggregate and cement paste incorporating high volumes of fly ash. The higher the paste strength, the higher is the bond strength.  相似文献   

19.
叶勤民  虞冕  陈胡星 《材料导报》2011,(Z2):465-467,477
在外掺轻烧氧化镁的水泥净浆中掺入粉煤灰,通过膨胀率变化分析粉煤灰对氧化镁膨胀的影响及其机理。粉煤灰在早期促进了氧化镁膨胀,到后期却抑制了膨胀,而且随着粉煤灰掺量的增加上述作用增强。为了更好地分析膨胀机理,结合膨胀场理论和KELVIN粘弹性模型深入讨论了粉煤灰对膨胀源所处环境的影响,并从水泥石的结构和力学性能揭示了粉煤灰对氧化镁膨胀的影响机制。  相似文献   

20.
The water-repellent and anti-permeability properties of cement are crucial for the durability and safety of concrete structures. In this work, we prepared a hydrophobic Portland cement by using oleic acid as a modifier for fly ash and examined the properties of the cement paste samples. Fly ash was firstly reacted with oleic acid by the dry milling method, and the modified fly ash was used to prepare the hydrophobic Portland cement. The IR spectra confirmed that the surface of fly ash was successfully capped with oleic acid, and carboxylic acid moieties were bonded with ≡SiOH and neutralized. The TG-DSC results showed that the amount of oleic acid loaded on the fly ash beads was 7.21 wt%. Fly ash dispersed evenly in the prepared cement paste samples and the distance between beads ranged in 2–10 μm. The water contact angle of the cement paste samples increased with rising content of modified fly ash, which demonstrated good water-repellent behavior. Different cement sections showed similar water-repellent behavior, which proved that the inner structure of the cement was also hydrophobic. Using the fly ash modified with oleic acid significantly decreased the water uptake and gas permeability of the prepared cement paste samples. The hydrophobic cement sample was optimal when the content of the modified fly ash in the cement was 12 wt% and after the cement was cured for 28 days.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号