首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Evolution of Scour Depth at Circular Bridge Piers   总被引:2,自引:0,他引:2  
Experiments of bridge pier scour are carried out under steady and unsteady clear-water scour conditions with uniform and nonuniform sediments. Around the pier nose, the sediment size variation of surface bed materials is investigated, and a regressed formula is obtained for estimating the mixing layer thickness in terms of median sediment size and geometric standard deviation of grain size distribution. A method based on the mixing layer concept is developed for calculating the equilibrium scour depth in nonuniform sediment. Based on the experimental data of scour rate, a model simulating the scour-depth evolution under steady flow in nonuniform sediment is presented. By analyzing experimental data, a scheme is proposed for computing the scour-depth evolution under unsteady flow.  相似文献   

2.
Scour at a bridge pier is the formation of a hole around the pier due to the erosion of soil by flowing water; this hole in the soil reduces the carrying capacity of the foundation and the pier. Excessive scour can cause a bridge pier to fail without warning. Current predictions of the depth of the scour hole around a bridge pier are based on deterministic models. This paper considers two alternative deterministic models to predict scour depth. For each deterministic model, a corresponding probabilistic model is constructed using a Bayesian statistical approach and available field and experimental data. The developed probabilistic models account for the estimated bias in the deterministic models and for the model uncertainty. Parameters from both prediction models are compared to determine their accuracy. The developed probabilistic models are used to estimate the probability of exceedance of scour depth around bridge piers. The method is demonstrated on an example bridge pier. The paper addresses model uncertainties for given hydrologic variables. Hydrologic uncertainties have been presented in a separate paper.  相似文献   

3.
Riprap of bridge piers is placed to prevent scour and to secure the pier from failure. Riprap is therefore an addition to a pier to increase its performance against scour. The present research intends to present three basic scour mechanisms associated with circular-shaped bridge piers in rivers first, to introduce then a number of selected experiments for a range of hydraulic, geometric, and sedimentologic conditions, and finally to describe a novel procedure for assessing the safety of these river elements against failure. This procedure is based on the Shields diagram relating to sediment entrainment in a uniform and flat sediment bed subjected by a water flow. The Shields approach is extended for the presence of a circular-shaped pier that is protected by a circular-arranged riprap layer of equal size elements. The design procedure presented in the following thus reduces to the entrainment condition of a pier for equal riprap and the sediment sizes and to the Shields entrainment condition when the pier diameter degenerates to 0.  相似文献   

4.
The Gupo Bridge crosses the Nakdong River near the city of Busan, South Korea. During Typhoon Maemi in 2003, the old Gupo Bridge collapsed due to excessive pier scour. More recently, the highway construction on the left-bank floodplain required right-bank channel widening to restore the channel flood-carrying capacity. This 7?m deep floodplain excavation is expected to cause significant local scour around the 8–10?m wide and 3?m thick spread footings of Piers 11 and 12 of the Subway Bridge and Piers 15 and 16 of the Gupo Bridge. Three design options are examined for retrofitting floodplain bridge piers with massive spread footings. A solution with sheet piles and riprap was recommended in 2006 as the most appropriate design, but Plan III with a conical riprap structure around the footings was ultimately constructed in 2007 for economic reasons. Laboratory experiments also highlight the need to place gravel and synthetic filters under the designed riprap.  相似文献   

5.
A simple procedure is proposed to assess the vulnerability of bridge piers in rivers, taking into account the phenomena governing fluvial dynamics during flood events. The procedure requires an estimation of the maximum scour depth of the soil surrounding both the pier and the foundation as well as an analysis of the bearing capacity of the pier–foundation–soil geotechnical system. The scour depth is determined in terms of the physical and mechanical properties of the streambed soil, the shape of the pier foundation and the destabilizing effects induced by hydrodynamic forces. The coupling of both the hydraulic and geotechnical analyses enables to identify the most significant factors characterizing scour depth and affecting pier vulnerability. Two levels (low, medium) of allowable vulnerability, bounded by an extreme condition of high vulnerability, are defined and analytically determined in function of the maximum scour depth and the foundation depth. Specific diagrams corresponding to each category of foreseen actions allow a quick evaluation of the vulnerability of a bridge pier.  相似文献   

6.
As a new alternative countermeasure to riprap for scour protection around bridge piers, wire gabions were investigated experimentally for failure mechanisms, effects of significant parameters on failure and its sizing in a clear-water condition. The dominating failure mechanism was found to be a shear failure. Based on the experimental data, the controlling factors for the stability of wire gabions as a scour countermeasure at the pier are flow depth relative to pier diameter, length to thickness ratio, coverage, alignment and placement depth of wire gabions. An equation for sizing of a wire gabion is proposed in terms of Froude number and factors reflecting both the effect and limit of significant parameters. Comparison of the equation with those of ripraps shows that smaller wire gabions than ripraps provide an equivalent protection implying cost effective and improved stability.  相似文献   

7.
A new methodology for the experimental analysis of the equilibrium scour depth at bridge piers is introduced and validated for clear-water conditions. The proposed experimental methodology determines the flow conditions for a given equilibrium scour instead of determining the equilibrium scour for given flow conditions, which is the usual practice. The basic hypothesis is that the shape of the scour hole is essentially related to the scour depth and sediment properties, but not to flow conditions. This hypothesis is checked experimentally. The proposed methodology may drastically reduce the time period required for experiments (from weeks to hours), and avoids the uncertainties due to the equilibrium scour being usually achieved asymptotically. Some preliminary results of the equilibrium scour obtained with the proposed methodology are compared to the expressions given in the literature, showing fair agreement.  相似文献   

8.
The temporal effect of hydrograph on local scour depth is investigated under clear-water scour condition. By analyzing the characteristics of scour-depth evolutions at bridge piers for different rising hydrographs, a relation for estimating the maximum scour depth in uniform sediment is proposed. In the relation, the flow unsteadiness effect is taken into account by an unsteady flow parameter combining the peak-flow intensity and time-to-peak factors. For nonuniform sediment with d84 employed as the effective sediment size, this relation can yield reasonably good results of the maximum scour depth under rising hydrograph.  相似文献   

9.
Design Method of Time-Dependent Local Scour at Circular Bridge Pier   总被引:2,自引:0,他引:2  
A reliable prediction of local scour depth related to hydrological characteristics such as peak discharge, and time corresponding to the equilibrium scour depth is essential for the efficient design of bridge pier foundation. In this paper, a design method to predict the local scour depth with time is proposed. An experimental program was carried out using a cylindrical pier placed in uniform beds under clear-water flows. The pier scour depth was calculated on the basis of a sediment transport equation. Equilibrium local scour depth is reached when the bed-shear stress tends to critical bed-shear stress in the scour hole. Hence, changes to bed-shear stress at the circular bridge pier should be incorporated in the sediment transport theory. The proposed method follows experimental data of various sources.  相似文献   

10.
The present study examines the use of independent and continuous pier collars in combination with riprap for reducing local scour around bridge pier groups. The efficiency of collars was studied through experiments. The data from the experiments were compared with data from earlier studies on single piers with collars and bridge pier groups without collars. The data showed that in the case of two piers in line, combination of continuous collars and riprap results in the most significant scour reduction of about 50 and 60% for the front and rear piers, respectively. In other cases for two piers in line, independent collars showed better efficiency than a continuous collar around both piers. It was also shown that efficiency of collars is more on a rectangular pier aligned with the flow than two piers in line. Experiments however, indicated that collars are not so effective in reduction of scouring around two transverse piers.  相似文献   

11.
Seismic Design of Concrete-Filled Circular Steel Bridge Piers   总被引:1,自引:0,他引:1  
The adequacy of the existing design provisions for concrete-filled steel pipes subjected to axial forces and flexure is reviewed by comparing the strengths predicted by the CAN/CSA-S16.1-M94, AISC LRFD 1994, and the Eurocode 4 1994 codes and standards against experimental data from a number of investigators. New proposed design equations are then developed, in a format compatible with North American practice. The new equations, based on a simple plasticity model calibrated using experimental data, are shown to provide improved correlation between predicted strength and experimental data. This paper provides information and data in support of the proposed design equations, which have already been implemented in the 2001 edition of the CSA-S16-01 “limit state design of steel structures” (CSA 2001) and in the “Recommended LRFD Guidelines for the Seismic Design of Highway Bridges” (MCEER/ATC 2003).  相似文献   

12.
Unbonded Posttensioned Concrete Bridge Piers. II: Seismic Analyses   总被引:1,自引:0,他引:1  
The seismic response characteristics of a proposed unbonded posttensioned concrete bridge-pier system are evaluated. Time-history analyses are carried out on prototype designs of single-column piers and two-column bents using detailed nonlinear finite-element (FE) models and equivalent single-degree-of-freedom (SDOF) systems embedded with phenomenological constitutive models. The phenomenological models are based on the hysteretic behavior of the prototype designs from cyclic analyses using nonlinear FE models, which have been calibrated and verified against experiments. The two modeling techniques are compared and evaluated for simulating the response of unbonded posttensioned bridge piers. Extensive time-history analyses are carried out on the SDOF models to study the influence of unbonded posttensioning on seismic response. To assess the adequacy of the proposed bridge-pier system, the seismic demands on the prototype designs are compared to their capacities as established in a companion paper. The applicability of current bridge design specifications to designing the proposed bridge-pier system is discussed.  相似文献   

13.
An understanding of bridge scour mechanisms during floods in a fluvial river is very important for cost-effective bridge foundation design. Reliable bridge scour data for flood events are limited. In this study, field experiments were performed at the Si-Lo Bridge in the lower Cho-Shui River, the longest river in Taiwan, to collect scour-depth data using a sliding magnetic collar, a steel rod, and a numbered-brick column. By separating each scour component, a methodology for simulating the temporal variations of the total scour depth under unsteady flow conditions is proposed. The proposed total-scour model integrates three scour components, namely general scour, contraction scour, and local scour. The collected field data, comprising both general scour and total scour depths, are used to validate the applicability of the proposed model. Based on the peak flow discharges during floods, a comparison of the local scour depths calculated using several commonly used equilibrium local scour formulas indicates that most equations may overestimate the local scour depth.  相似文献   

14.
Circular reinforced concrete highway bridge piers, designed in accordance with the requirements of the California Department of Transportation (Caltrans) in the U.S., New Zealand, and Japanese specifications, are experimentally investigated to assess their seismic performance. Pseudodynamic test procedures are developed to perform experiments on 30% scaled models of the three prototype bridge piers. Each specimen is subjected to a sequence of three different earthquake ground motions scaled appropriately to represent: (1) the design basis earthquake (DBE) with a 90% nonexceedance probability; (2) the maximum considered earthquake (MCE) with a 50% nonexceedance probability; and (3) the MCE with a 90% nonexceedance probability. Damage states after the earthquakes are assessed and mapped for seismic risk assessment. The damage outcomes and the corresponding seismic risks validate the objectives of the performance-based design codes of the three countries. The results show that when bridge piers are designed to the specifications of each of the three countries, satisfactory performance with only slight to moderate damage can be expected for DBE. For the MCE, severe damage without collapse is likely for the Caltrans and Japanese piers. However, the NZ pier may not be able to survive MCE motions with sufficient reliability to ensure the preservation of life-safety.  相似文献   

15.
The monotonic and cyclic behavior of a proposed unbonded, posttensioned concrete bridge pier system is studied using finite-element analyses. A procedure to evaluate seismic capacities based on results from the monotonic and cyclic analyses is described in the framework of a two-level approach considering functional- and survival-performance limits. A set of criteria to define functional-and survival-level displacement capacities for the system is developed. The proposed criteria represent improvements over existing criteria in that they are applicable to both conventional reinforced concrete structures and unbonded posttensioned structures. The monotonic and cyclic behavior of prototype single-column pier and two-column bent designs is presented. Monotonic analyses are performed to characterize the stiffness, strength, ductility, and limit-state behavior of these systems. Cyclic analyses are carried out to estimate energy dissipation capacity, residual displacements, and general hysteretic behavior. The influence of the degree of unbonded posttensioning on bridge pier behavior is examined. Using the finite-element results and the proposed criteria, seismic capacities of the prototype bridge pier systems are established.  相似文献   

16.
The damage suffered by elevated viaducts of the Hanshin Expressway Kobe Route during the 1995 Kobe earthquake is described with emphasis on reinforced concrete (RC) piers. Although many piers were severely damaged, it is also true that the damage to many piers appeared moderate or even mild. On the other hand, a number of piers suffered from large residual inclination in spite of the apparently light damage. By considering that the large residual inclination of piers included severe earthquake-induced damage, it is pointed out that almost all the RC single piers from P35 to P350 received consistently severe damage. The cause of large residual inclination, especially in apparently nondamaged piers, is studied. A dynamic analysis of a single RC pier is conducted to study the relationship between residual inclination and residual deformation of a pier. As a result, we find that the flexural residual deformation of a pier cannot explain the observed large residual inclination, but it is suggested that the pulling out of reinforcing bar from the footing can be a primary cause of the observed large residual inclination.  相似文献   

17.
To investigate their adequacy as energy dissipating elements during earthquakes, this paper reports on cyclic inelastic tests executed to determine the maximum strength and ductility of four concrete-filled circular steel piers joined to a foundation detail proposed to develop the full composite strength at the base of these columns. Column diameters considered were 324 and 406 mm, with D/t ratios ranging from 34 to 64. The ductility of all tested columns was found to be good, all columns being able to reach drifts of 7% before a significant loss in moment capacity occurred as a result of cracks opening on the local buckles, suggesting that concrete-filled steel tubes can be effective as bridge piers in seismic regions of North America.  相似文献   

18.
Vehicle Collision with Bridge Piers   总被引:2,自引:0,他引:2  
Inelastic transient finite element simulations are used to investigate the demands generated during collisions between vehicles and bridge piers. Such collisions have occurred in the past, sometimes with catastrophic consequences. Two different types of trucks and two different bridge/pier systems are used in the simulations. The approach speeds for the trucks range from 55 to 135 kph. Various quantities of interest are extracted from the finite element results and used to develop a better understanding of the vehicle/pier crash process and to critique current specifications addressing such events. Although physical vehicle–pier impact tests were not carried out as part of this research, a variety of exercises are conducted to provide confidence in the analysis results. The simulations show that current collision design provisions could be unconservative and that there may be a population of bridge piers that are vulnerable to accidental or malicious impact by heavy trucks.  相似文献   

19.
Results are presented from laboratory experiments to investigate the effectiveness of bed sills as countermeasures against local scouring at a smooth circular bridge pier, for flow conditions near the threshold of uniform sediment motion. The bed sill was located downstream of the pier, and its effectiveness with the distance between pier and sill was evaluated. The dependence of the scour depth on different dimensionless groups was defined. The results showed that a bed sill placed at a short distance downstream of the pier reduces the scour depth, area, and volume. In particular, the smaller the distance between the two structures, the larger the effectiveness of the countermeasure. The bed sill seems to take effect some time after the beginning of the test, as the scour hole downstream of the bridge pier develops sufficiently and interacts with the countermeasure.  相似文献   

20.
Clear-water scour at circular and square piers, embedded in a sand bed overlain by a thin armor layer of gravels, was experimentally studied. Depending on the pier width, flow depth, armor gravel, and bed-sand sizes, three cases of scour holes at piers in armored beds were recognized. A comparison of the experimental data shows that the scour depth at a pier with an armor layer under limiting stability of the surface particles is greater than that without an armor layer for the same bed sediments, if the secondary armoring formed within the scour hole is scattered. The equations of maximum equilibrium scour depths at piers in armored beds for these cases are proposed. On the other hand, the scour depth with an armor layer is less than that without an armor layer for the same bed sediments, when the scour hole is shielded by the compact secondary armor layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号